tgoop.com/nn_for_science/2491
Last Update:
🔥 Модельные сплавы: новый подход к агентам ИИ
Команда XBOW поделилась исследованием, показывающим, как объединение различных моделей ИИ создаёт нечто более мощное, чем сумма его частей — подобно металлическим сплавам. Вместо использования одной модели в цикле, они чередуют разные модели (Sonnet 4.0, Gemini 2.5 Pro), сохраняя единый чат-поток.
📈 Результаты: точность выросла с 25% до 55% на задачах поиска уязвимостей
🎯 Как работает агент-сплав:
- представим что у вас есть 2 разные модели (например, Claude и ChatGPT)
- 1-й вопрос отправляете в Claude → получаете ответ
- 2-й вопрос отправляете в ChatGPT, НО показываете ему весь разговор, включая то, что ответил Claude
- ChatGPT думает, что предыдущий ответ написал он сам!
- 3-й вопрос снова Claude, показываем ему весь разговор
- И так чередуем
Зачем это нужно:
- Claude хорош в одном, ChatGPT в другом
- Когда они работают вместе, но не знают об этом, получается лучший результат
- Как будто один умный человек, который иногда думает как математик, а иногда как художник
💡 Когда использовать:
- Итеративные задачи с >10 вызовами модели
- Нужно комбинировать разные идеи
- Есть доступ к достаточно разным моделям
📝 Чем более разные модели, тем лучше они работали "в сплаве". В ТРИЗ это называется би-система со смещенными характеристиками ☯️
Модель, которая лучше по отдельности, как правило, будет лучше выглядеть и в составе сплава. Модель, сильно отстающая от других, может даже снизить характеристики сплава.
Несбалансированные сплавы следует балансировать в сторону более прочной модели.
⚡ Лучший результат в эксперименте показал сплав Sonnet 4.0 + Gemini 2.5 Pro: 68.8% против 57.5% у чистого Sonnet
💻 Блог