Warning: file_put_contents(aCache/aDaily/post/nn_for_science/-2216-2217-2218-2219-2220-2221-2222-): Failed to open stream: No space left on device in /var/www/tgoop/post.php on line 50
AI для Всех@nn_for_science P.2219
NN_FOR_SCIENCE Telegram 2219
Оптимизация точности, задержки и стоимости в приложениях на базе LLM

Разработка приложений с использованием крупных языковых моделей (LLM) всегда связана с поиском баланса между точностью, задержкой и стоимостью. В этом докладе рассказывали, как эффективно оптимизировать каждую из этих составляющих.

Точность: как установить правильную цель
Первый шаг на пути к высокой точности — создание наборов оценок (evals), которые помогают протестировать производительность модели на различных этапах.

Один из способов установить целевую точность — разработать модель затрат. Сравните стоимость ошибок и успехов модели: сколько стоит исправление ошибки и сколько экономит правильное решение? Так вы сможете определить, какая точность будет для вас приемлемой. Стоит отметить, что пользователи часто ожидают от LLM более высокой точности, чем от людей.

Задержка: как её уменьшить
Задержка — это время, которое проходит от момента запроса до получения ответа. Она складывается из нескольких составляющих:

- Сетевая задержка (примерно 200 мс из-за роутинга OpenAI).
- Время до первого токена (TTFT) — задержка перед началом генерации ответа.
- Время между токенами (TBT) — задержка между выводом каждого токена.
- Количество выводимых токенов — больше токенов требует больше времени.

Как снизить задержку:

- Используйте короткие запросы и меньшие модели.
- Внедрите кэширование запросов, чтобы избегать повторной генерации.
- Сократите количество выводимых токенов — 100 токенов генерируются в 10 раз быстрее, чем 1000.

Стоимость: как сделать приложение экономичнее
Многие способы сокращения задержки также помогают снизить затраты. Например:

- Кэширование позволяет сэкономить на повторной генерации одного и того же ответа.
- Пакетные запросы (Batch Requests) снижают накладные расходы за счёт обработки нескольких запросов одновременно.
Чем меньше токенов — тем дешевле и быстрее будет работа модели.
Используйте специально сгенерированные промпты из плэйграунда

Заключение: сбалансированный подход
Оптимизация LLM-приложений требует внимательного подхода к каждому аспекту: точности, задержке и стоимости.

Установите целевые показатели, проанализируйте источники задержек и найдите способы сокращения затрат. Такой подход поможет вам создать более быстрое, точное и экономичное решение.
👍6🔥31😐1



tgoop.com/nn_for_science/2219
Create:
Last Update:

Оптимизация точности, задержки и стоимости в приложениях на базе LLM

Разработка приложений с использованием крупных языковых моделей (LLM) всегда связана с поиском баланса между точностью, задержкой и стоимостью. В этом докладе рассказывали, как эффективно оптимизировать каждую из этих составляющих.

Точность: как установить правильную цель
Первый шаг на пути к высокой точности — создание наборов оценок (evals), которые помогают протестировать производительность модели на различных этапах.

Один из способов установить целевую точность — разработать модель затрат. Сравните стоимость ошибок и успехов модели: сколько стоит исправление ошибки и сколько экономит правильное решение? Так вы сможете определить, какая точность будет для вас приемлемой. Стоит отметить, что пользователи часто ожидают от LLM более высокой точности, чем от людей.

Задержка: как её уменьшить
Задержка — это время, которое проходит от момента запроса до получения ответа. Она складывается из нескольких составляющих:

- Сетевая задержка (примерно 200 мс из-за роутинга OpenAI).
- Время до первого токена (TTFT) — задержка перед началом генерации ответа.
- Время между токенами (TBT) — задержка между выводом каждого токена.
- Количество выводимых токенов — больше токенов требует больше времени.

Как снизить задержку:

- Используйте короткие запросы и меньшие модели.
- Внедрите кэширование запросов, чтобы избегать повторной генерации.
- Сократите количество выводимых токенов — 100 токенов генерируются в 10 раз быстрее, чем 1000.

Стоимость: как сделать приложение экономичнее
Многие способы сокращения задержки также помогают снизить затраты. Например:

- Кэширование позволяет сэкономить на повторной генерации одного и того же ответа.
- Пакетные запросы (Batch Requests) снижают накладные расходы за счёт обработки нескольких запросов одновременно.
Чем меньше токенов — тем дешевле и быстрее будет работа модели.
Используйте специально сгенерированные промпты из плэйграунда

Заключение: сбалансированный подход
Оптимизация LLM-приложений требует внимательного подхода к каждому аспекту: точности, задержке и стоимости.

Установите целевые показатели, проанализируйте источники задержек и найдите способы сокращения затрат. Такой подход поможет вам создать более быстрое, точное и экономичное решение.

BY AI для Всех










Share with your friend now:
tgoop.com/nn_for_science/2219

View MORE
Open in Telegram


Telegram News

Date: |

Channel login must contain 5-32 characters The Channel name and bio must be no more than 255 characters long End-to-end encryption is an important feature in messaging, as it's the first step in protecting users from surveillance. “[The defendant] could not shift his criminal liability,” Hui said. A Hong Kong protester with a petrol bomb. File photo: Dylan Hollingsworth/HKFP.
from us


Telegram AI для Всех
FROM American