Warning: file_put_contents(aCache/aDaily/post/nn_for_science/-2180-2181-2182-2183-2184-2185-2186-2187-2188-2189-): Failed to open stream: No space left on device in /var/www/tgoop/post.php on line 50
AI для Всех@nn_for_science P.2187
NN_FOR_SCIENCE Telegram 2187
Мощные небольшие модели с помощью дистилляции

Дистилляция моделей — это путь от прототипа к масштабированию. При использовании крупных моделей, таких как GPT-4o, разработчики сталкиваются с проблемами: время отклика, лимиты на запросы и высокая стоимость. Например, GPT-4o набирает 88% на MMLU, а его уменьшенная версия GPT-4o Mini — 82%. Но важен ли этот показатель для реальных задач?

Дистилляция: узкий фокус вместо широкого интеллекта
Большие модели часто превосходят по академическим метрикам, но такие тесты не всегда отражают реальные потребности пользователей. Здесь на сцену выходит дистилляция: не нужн широкий интеллект, а только узкий. Мы обучаем меньшую модель на основе данных, сгенерированных большой моделью.

Как это работает:
1 Оценка задач: Определение критериев, по которым модель будет оцениваться.
2 Сбор данных: Запись качественных ответов большой модели.
3 Файнтюнинг: Обучение маленькой модели на этих данных.

Основные сложности
На практике только около 15% разработчиков используют API для файнтюнинга. Главная сложность — создание качественного набора данных для обучения. Однако OpenAI представила два новых инструмента, которые упрощают этот процесс:
1 Stored Completions: Сохранение ответов моделей с параметром store=True.
2 Evals (beta): Оценка производительности модели прямо в интерфейсе Playground.

Теперь вы можете сохранять все выходные данные большой модели и добавлять метаданные, такие как разделение на тест и обучение. Во вкладке Evals можно настроить критерии оценки и сразу видеть результаты. Этот новый инструмент значительно упрощает процесс.

Дистилляция GPT-4o в GPT-4o-mini
Процесс дистилляции прост:
• Определите критерии оценки
• Сохраните результаты большой модели
• Нажмите "Distill" и выберите GPT-4o-mini в качестве базовой модели.
Через некоторое время вы получите настроенную модель, которая работает немного хуже GPT-4o, но значительно легче и дешевле в использовании.

Примеры и рекомендации
Где дистилляция наиболее эффективна:
• Анализ тональности
• Извлечение сущностей
• Майндинг мнений
Где она подходит:
• Классификация
• Копирайтинг
• Генерация резюме
• Чат-боты поддержки
Где она не работает:
• Тесты MMLU/GPQA
• Вопросно-ответные системы открытого домена
• Точный перевод
Основные ошибки
• Неправильное распределение данных
• Слишком малое количество примеров

Как повысить эффективность дистилляции:
• Оптимизируйте большую модель
• Качественно подберите обучающие данные
• Не переусердствуйте с количеством примеров — достаточно нескольких тысяч.
• Работайте итеративно: оценивайте и улучшайте модель постепенно.

Дистилляция — это способ создать мощные и узкоспециализированные AI-решения, которые легко и быстро адаптируются под конкретные задачи, снижая затраты и увеличивая производительность.
👍108😐5🔥2



tgoop.com/nn_for_science/2187
Create:
Last Update:

Мощные небольшие модели с помощью дистилляции

Дистилляция моделей — это путь от прототипа к масштабированию. При использовании крупных моделей, таких как GPT-4o, разработчики сталкиваются с проблемами: время отклика, лимиты на запросы и высокая стоимость. Например, GPT-4o набирает 88% на MMLU, а его уменьшенная версия GPT-4o Mini — 82%. Но важен ли этот показатель для реальных задач?

Дистилляция: узкий фокус вместо широкого интеллекта
Большие модели часто превосходят по академическим метрикам, но такие тесты не всегда отражают реальные потребности пользователей. Здесь на сцену выходит дистилляция: не нужн широкий интеллект, а только узкий. Мы обучаем меньшую модель на основе данных, сгенерированных большой моделью.

Как это работает:
1 Оценка задач: Определение критериев, по которым модель будет оцениваться.
2 Сбор данных: Запись качественных ответов большой модели.
3 Файнтюнинг: Обучение маленькой модели на этих данных.

Основные сложности
На практике только около 15% разработчиков используют API для файнтюнинга. Главная сложность — создание качественного набора данных для обучения. Однако OpenAI представила два новых инструмента, которые упрощают этот процесс:
1 Stored Completions: Сохранение ответов моделей с параметром store=True.
2 Evals (beta): Оценка производительности модели прямо в интерфейсе Playground.

Теперь вы можете сохранять все выходные данные большой модели и добавлять метаданные, такие как разделение на тест и обучение. Во вкладке Evals можно настроить критерии оценки и сразу видеть результаты. Этот новый инструмент значительно упрощает процесс.

Дистилляция GPT-4o в GPT-4o-mini
Процесс дистилляции прост:
• Определите критерии оценки
• Сохраните результаты большой модели
• Нажмите "Distill" и выберите GPT-4o-mini в качестве базовой модели.
Через некоторое время вы получите настроенную модель, которая работает немного хуже GPT-4o, но значительно легче и дешевле в использовании.

Примеры и рекомендации
Где дистилляция наиболее эффективна:
• Анализ тональности
• Извлечение сущностей
• Майндинг мнений
Где она подходит:
• Классификация
• Копирайтинг
• Генерация резюме
• Чат-боты поддержки
Где она не работает:
• Тесты MMLU/GPQA
• Вопросно-ответные системы открытого домена
• Точный перевод
Основные ошибки
• Неправильное распределение данных
• Слишком малое количество примеров

Как повысить эффективность дистилляции:
• Оптимизируйте большую модель
• Качественно подберите обучающие данные
• Не переусердствуйте с количеством примеров — достаточно нескольких тысяч.
• Работайте итеративно: оценивайте и улучшайте модель постепенно.

Дистилляция — это способ создать мощные и узкоспециализированные AI-решения, которые легко и быстро адаптируются под конкретные задачи, снижая затраты и увеличивая производительность.

BY AI для Всех













Share with your friend now:
tgoop.com/nn_for_science/2187

View MORE
Open in Telegram


Telegram News

Date: |

While the character limit is 255, try to fit into 200 characters. This way, users will be able to take in your text fast and efficiently. Reveal the essence of your channel and provide contact information. For example, you can add a bot name, link to your pricing plans, etc. Channel login must contain 5-32 characters The imprisonment came as Telegram said it was "surprised" by claims that privacy commissioner Ada Chung Lai-ling is seeking to block the messaging app due to doxxing content targeting police and politicians. Private channels are only accessible to subscribers and don’t appear in public searches. To join a private channel, you need to receive a link from the owner (administrator). A private channel is an excellent solution for companies and teams. You can also use this type of channel to write down personal notes, reflections, etc. By the way, you can make your private channel public at any moment. In handing down the sentence yesterday, deputy judge Peter Hui Shiu-keung of the district court said that even if Ng did not post the messages, he cannot shirk responsibility as the owner and administrator of such a big group for allowing these messages that incite illegal behaviors to exist.
from us


Telegram AI для Всех
FROM American