tgoop.com/nn_for_science/2106
Last Update:
📢 Тихая ИИ революция в прогнозировании погоды: NeuralGCM
Прогнозирование погоды всегда представляло собой непростую задачу. Последние годы, для решения этой задачи все чаще предлагаются нейронные сети. Исследователи из Гугла, делают следующий шаг в моделировании климата и представляют NeuralGCM — инновационную систему на основе искусственного интеллекта и физического моделирования.
Вот как она устроена:
🌐 Гибридный подход:
NeuralGCM состоит из двух ключевых компонентов:
1. "Динамическое ядро", основанное на физических законах, моделирующее крупномасштабные атмосферные движения.
2. Нейронные сети, моделирующие мелкомасштабные процессы, такие как образование облаков.
🧠 Принцип работы:
1. Модель делит атмосферу Земли на трёхмерную сетку.
2. Для каждой ячейки этой сетки нейронные сети анализируют:
- Температуру,
- Давление,
- Влажность,
- Данные о ветре.
3. Эти сети предсказывают изменения условий в краткосрочной перспективе.
4. Физическая модель использует эти предсказания для обновления глобального состояния погоды.
5. Этот процесс повторяется, создавая прогнозы на дни вперед.
🔬 Секрет успеха: дифференцируемый дизайн
- Вся система разработана так, чтобы быть дифференцируемой.
- Это позволяет оптимизировать её с помощью методов машинного обучения.
- В результате ИИ учится взаимодействовать с предсказаниями физической модели.
🏋️ Процесс обучения:
- Использованы 40 лет исторических данных о погоде.
- Начинали с предсказаний на 6 часов, постепенно увеличивая период до 5 дней.
- Такой подход помогает модели понимать долгосрочные эффекты своих предсказаний.
🏆 Впечатляющие результаты:
- Соответствует точности традиционных методов.
- Работает значительно быстрее (до 1000 раз в некоторых сравнениях).
- Способна моделировать климатические паттерны на десятилетия вперёд (ну это еще надо валидировать).
💡 Почему это важно:
1. Возможность более точного и эффективного прогнозирования погоды.
2. Помощь в лучшем понимании изменения климата.
3. Демонстрация того, как ИИ может не только заменить, но и улучшить традиционные научные методы.
Этот гибридный подход к моделированию погоды показывает, как глубокие научные знания могут сочетаться с передовыми технологиями ИИ. Это важный шаг вперёд, который может изменить не только метеорологию, но и многие другие области, зависящие от сложных симуляций.
⛈️ Статья
BY AI для Всех
Share with your friend now:
tgoop.com/nn_for_science/2106