Notice: file_put_contents(): Write of 9692 bytes failed with errno=28 No space left on device in /var/www/tgoop/post.php on line 50

Warning: file_put_contents(): Only 12288 of 21980 bytes written, possibly out of free disk space in /var/www/tgoop/post.php on line 50
AI для Всех@nn_for_science P.2106
NN_FOR_SCIENCE Telegram 2106
This media is not supported in your browser
VIEW IN TELEGRAM
📢 Тихая ИИ революция в прогнозировании погоды: NeuralGCM

Прогнозирование погоды всегда представляло собой непростую задачу. Последние годы, для решения этой задачи все чаще предлагаются нейронные сети. Исследователи из Гугла, делают следующий шаг в моделировании климата и представляют NeuralGCM — инновационную систему на основе искусственного интеллекта и физического моделирования.

Вот как она устроена:

🌐 Гибридный подход:
NeuralGCM состоит из двух ключевых компонентов:
1. "Динамическое ядро", основанное на физических законах, моделирующее крупномасштабные атмосферные движения.
2. Нейронные сети, моделирующие мелкомасштабные процессы, такие как образование облаков.

🧠 Принцип работы:
1. Модель делит атмосферу Земли на трёхмерную сетку.
2. Для каждой ячейки этой сетки нейронные сети анализируют:
- Температуру,
- Давление,
- Влажность,
- Данные о ветре.
3. Эти сети предсказывают изменения условий в краткосрочной перспективе.
4. Физическая модель использует эти предсказания для обновления глобального состояния погоды.
5. Этот процесс повторяется, создавая прогнозы на дни вперед.

🔬 Секрет успеха: дифференцируемый дизайн
- Вся система разработана так, чтобы быть дифференцируемой.
- Это позволяет оптимизировать её с помощью методов машинного обучения.
- В результате ИИ учится взаимодействовать с предсказаниями физической модели.

🏋️ Процесс обучения:
- Использованы 40 лет исторических данных о погоде.
- Начинали с предсказаний на 6 часов, постепенно увеличивая период до 5 дней.
- Такой подход помогает модели понимать долгосрочные эффекты своих предсказаний.

🏆 Впечатляющие результаты:
- Соответствует точности традиционных методов.
- Работает значительно быстрее (до 1000 раз в некоторых сравнениях).
- Способна моделировать климатические паттерны на десятилетия вперёд (ну это еще надо валидировать).

💡 Почему это важно:
1. Возможность более точного и эффективного прогнозирования погоды.
2. Помощь в лучшем понимании изменения климата.
3. Демонстрация того, как ИИ может не только заменить, но и улучшить традиционные научные методы.

Этот гибридный подход к моделированию погоды показывает, как глубокие научные знания могут сочетаться с передовыми технологиями ИИ. Это важный шаг вперёд, который может изменить не только метеорологию, но и многие другие области, зависящие от сложных симуляций.

⛈️ Статья
36🔥15👍6



tgoop.com/nn_for_science/2106
Create:
Last Update:

📢 Тихая ИИ революция в прогнозировании погоды: NeuralGCM

Прогнозирование погоды всегда представляло собой непростую задачу. Последние годы, для решения этой задачи все чаще предлагаются нейронные сети. Исследователи из Гугла, делают следующий шаг в моделировании климата и представляют NeuralGCM — инновационную систему на основе искусственного интеллекта и физического моделирования.

Вот как она устроена:

🌐 Гибридный подход:
NeuralGCM состоит из двух ключевых компонентов:
1. "Динамическое ядро", основанное на физических законах, моделирующее крупномасштабные атмосферные движения.
2. Нейронные сети, моделирующие мелкомасштабные процессы, такие как образование облаков.

🧠 Принцип работы:
1. Модель делит атмосферу Земли на трёхмерную сетку.
2. Для каждой ячейки этой сетки нейронные сети анализируют:
- Температуру,
- Давление,
- Влажность,
- Данные о ветре.
3. Эти сети предсказывают изменения условий в краткосрочной перспективе.
4. Физическая модель использует эти предсказания для обновления глобального состояния погоды.
5. Этот процесс повторяется, создавая прогнозы на дни вперед.

🔬 Секрет успеха: дифференцируемый дизайн
- Вся система разработана так, чтобы быть дифференцируемой.
- Это позволяет оптимизировать её с помощью методов машинного обучения.
- В результате ИИ учится взаимодействовать с предсказаниями физической модели.

🏋️ Процесс обучения:
- Использованы 40 лет исторических данных о погоде.
- Начинали с предсказаний на 6 часов, постепенно увеличивая период до 5 дней.
- Такой подход помогает модели понимать долгосрочные эффекты своих предсказаний.

🏆 Впечатляющие результаты:
- Соответствует точности традиционных методов.
- Работает значительно быстрее (до 1000 раз в некоторых сравнениях).
- Способна моделировать климатические паттерны на десятилетия вперёд (ну это еще надо валидировать).

💡 Почему это важно:
1. Возможность более точного и эффективного прогнозирования погоды.
2. Помощь в лучшем понимании изменения климата.
3. Демонстрация того, как ИИ может не только заменить, но и улучшить традиционные научные методы.

Этот гибридный подход к моделированию погоды показывает, как глубокие научные знания могут сочетаться с передовыми технологиями ИИ. Это важный шаг вперёд, который может изменить не только метеорологию, но и многие другие области, зависящие от сложных симуляций.

⛈️ Статья

BY AI для Всех


Share with your friend now:
tgoop.com/nn_for_science/2106

View MORE
Open in Telegram


Telegram News

Date: |

‘Ban’ on Telegram Telegram offers a powerful toolset that allows businesses to create and manage channels, groups, and bots to broadcast messages, engage in conversations, and offer reliable customer support via bots. Hui said the time period and nature of some offences “overlapped” and thus their prison terms could be served concurrently. The judge ordered Ng to be jailed for a total of six years and six months. Other crimes that the SUCK Channel incited under Ng’s watch included using corrosive chemicals to make explosives and causing grievous bodily harm with intent. The court also found Ng responsible for calling on people to assist protesters who clashed violently with police at several universities in November 2019.
from us


Telegram AI для Всех
FROM American