NINJA_LEARN_IR Telegram 784
خب خب خب، وابستگی های تابعی توی دیتابیس ها🗄
وقتی داریم یه دیتابیس رو طراحی میکنیم، ممکنه با مسئله ای رو به رو بشیم که داده هامون تکراری بشن یا اینکه ناسازگاری پیش بیاد. اینجا میتونیم با استفاده از وابستگی های تابعی این مشکل رو حل کنیم. قبل از اینکه بتونیم وابستگی‌های تابعی رو تشخیص بدیم، باید کلیدهای جدول‌هامون رو بشناسیم، چون معمولاً وابستگی‌ها بر اساس کلیدها تعریف می‌شن. اگه با کلیدها آشنا نیستین توی این پست درمورد کلیدها هم توضیح دادیم.

وابستگی تابعی چیه؟
🧐
وابستگی تابعی زمانی رخ میده که مقدار یک ستون در جدول بتونه مقدار یه ستون دیگه رو مشخص کنه. یعنی اگه دو سطر در ستون A مقدار یکسانی داشته باشن، حتما مقدار ستون B هم باید یکسان باشه. وابستگی تابعی رو به شکل زیر نمایش میدیم:
A->B
این نماد به این معناست که ستون A مقدار ستون B رو تعیین میکنه. یا از یه زاویه دیگه بهش نگاه کنیم، ستون B به ستون A وابسته هست.
برای مثال توی جدول کارمندان، emp_id میتونه emp_name رو مشخص کنه. چون هر شناسه کارمند منحصر به فرده و فقط به یک نام خاص اشاره میکنه.

اهمیت وابستگی های تابعی
📝
1️⃣بهبود طراحی پایگاه داده:
شناسایی وابستگی های تابعی به ما کمک میکنن تا جدول هامون رو به شکل منطقی و بهینه طراحی کنیم و از تکرار داده ها و اطلاعات جلوگیری کنیم.

2️⃣کاهش ناهماهنگی داده:
نرمال سازی جدول ها بر اساس وابستگی های تابعی، ناهماهنگی و تناقضات داده ها رو کم میکنه و باعث بالا رفتن کیفیت داده ها میشه.

3️⃣پیدا کردن کلیدهای کاندید:
وابستگی های تابعی به پیدا کردن کلیدهای کاندید کمک میکنن.

4️⃣بهینه سازی عملکرد:
طراحی بر اساس وابستگی های تابعی، عملکرد جستجو، به روزرسانی و حذف داده هارو بهینه میکنه و از تداخل جلوگیری میکنه.

5️⃣مدیریت داده های پیچیده:
کمک به درک بهتر ساختار و روابط داده ها در سیستم های پیچیده و جلوگیری از مشکلات احتمالی.

6️⃣نرمال فرم ها:
نرمال فرم ها معمولا براساس این وابستگی ها تعریف میشن و از اون ها برای بهینه سازی ساختار جدول ها استفاده میکنن.

نحوه کشف وابستگی های تابعی
🔍
1️⃣تحلیل داده ها:
بررسی رکورد ها و شناسایی الگوها و روابط بین ستون ها.

2️⃣روش های الگوریتمی:
استفاده از الگوریتم هایی مثل Apriori و FD-Mining برای کشف وابستگی های تابعی.

3️⃣تجزیه و تحلیل آماری:
استفاده از روش های آماری مثل تحلیل همبستگی و رگرسیون برای شناسایی وابستگی ها.

4️⃣مقایسه مدل های مفهومی:
ایجاد مدل های مفهومی و مقایسه اونها با داده های واقعی.

جمع بندی
✍️
توی این پست با مفهوم وابستگی های تابعی آشنا شدیم، اهمیت اون هارو درک کردیم و یاد گرفتیم چطوری کشفشون کنیم و ازشون توی روند طراحی دیتابیسمون استفاده کنیم. توی بخش بعد به انواع وابستگی های تابعی و مثال های دقیق تر میپردازیم.

#️⃣ #programming #db


🥷🏻 CHANNEL | GROUP
7👍2



tgoop.com/ninja_learn_ir/784
Create:
Last Update:

خب خب خب، وابستگی های تابعی توی دیتابیس ها🗄
وقتی داریم یه دیتابیس رو طراحی میکنیم، ممکنه با مسئله ای رو به رو بشیم که داده هامون تکراری بشن یا اینکه ناسازگاری پیش بیاد. اینجا میتونیم با استفاده از وابستگی های تابعی این مشکل رو حل کنیم. قبل از اینکه بتونیم وابستگی‌های تابعی رو تشخیص بدیم، باید کلیدهای جدول‌هامون رو بشناسیم، چون معمولاً وابستگی‌ها بر اساس کلیدها تعریف می‌شن. اگه با کلیدها آشنا نیستین توی این پست درمورد کلیدها هم توضیح دادیم.

وابستگی تابعی چیه؟
🧐
وابستگی تابعی زمانی رخ میده که مقدار یک ستون در جدول بتونه مقدار یه ستون دیگه رو مشخص کنه. یعنی اگه دو سطر در ستون A مقدار یکسانی داشته باشن، حتما مقدار ستون B هم باید یکسان باشه. وابستگی تابعی رو به شکل زیر نمایش میدیم:
A->B
این نماد به این معناست که ستون A مقدار ستون B رو تعیین میکنه. یا از یه زاویه دیگه بهش نگاه کنیم، ستون B به ستون A وابسته هست.
برای مثال توی جدول کارمندان، emp_id میتونه emp_name رو مشخص کنه. چون هر شناسه کارمند منحصر به فرده و فقط به یک نام خاص اشاره میکنه.

اهمیت وابستگی های تابعی
📝
1️⃣بهبود طراحی پایگاه داده:
شناسایی وابستگی های تابعی به ما کمک میکنن تا جدول هامون رو به شکل منطقی و بهینه طراحی کنیم و از تکرار داده ها و اطلاعات جلوگیری کنیم.

2️⃣کاهش ناهماهنگی داده:
نرمال سازی جدول ها بر اساس وابستگی های تابعی، ناهماهنگی و تناقضات داده ها رو کم میکنه و باعث بالا رفتن کیفیت داده ها میشه.

3️⃣پیدا کردن کلیدهای کاندید:
وابستگی های تابعی به پیدا کردن کلیدهای کاندید کمک میکنن.

4️⃣بهینه سازی عملکرد:
طراحی بر اساس وابستگی های تابعی، عملکرد جستجو، به روزرسانی و حذف داده هارو بهینه میکنه و از تداخل جلوگیری میکنه.

5️⃣مدیریت داده های پیچیده:
کمک به درک بهتر ساختار و روابط داده ها در سیستم های پیچیده و جلوگیری از مشکلات احتمالی.

6️⃣نرمال فرم ها:
نرمال فرم ها معمولا براساس این وابستگی ها تعریف میشن و از اون ها برای بهینه سازی ساختار جدول ها استفاده میکنن.

نحوه کشف وابستگی های تابعی
🔍
1️⃣تحلیل داده ها:
بررسی رکورد ها و شناسایی الگوها و روابط بین ستون ها.

2️⃣روش های الگوریتمی:
استفاده از الگوریتم هایی مثل Apriori و FD-Mining برای کشف وابستگی های تابعی.

3️⃣تجزیه و تحلیل آماری:
استفاده از روش های آماری مثل تحلیل همبستگی و رگرسیون برای شناسایی وابستگی ها.

4️⃣مقایسه مدل های مفهومی:
ایجاد مدل های مفهومی و مقایسه اونها با داده های واقعی.

جمع بندی
✍️
توی این پست با مفهوم وابستگی های تابعی آشنا شدیم، اهمیت اون هارو درک کردیم و یاد گرفتیم چطوری کشفشون کنیم و ازشون توی روند طراحی دیتابیسمون استفاده کنیم. توی بخش بعد به انواع وابستگی های تابعی و مثال های دقیق تر میپردازیم.

#️⃣ #programming #db


🥷🏻 CHANNEL | GROUP

BY Ninja Learn | نینجا لرن


Share with your friend now:
tgoop.com/ninja_learn_ir/784

View MORE
Open in Telegram


Telegram News

Date: |

The Standard Channel Just at this time, Bitcoin and the broader crypto market have dropped to new 2022 lows. The Bitcoin price has tanked 10 percent dropping to $20,000. On the other hand, the altcoin space is witnessing even more brutal correction. Bitcoin has dropped nearly 60 percent year-to-date and more than 70 percent since its all-time high in November 2021. Over 33,000 people sent out over 1,000 doxxing messages in the group. Although the administrators tried to delete all of the messages, the posting speed was far too much for them to keep up. In the next window, choose the type of your channel. If you want your channel to be public, you need to develop a link for it. In the screenshot below, it’s ”/catmarketing.” If your selected link is unavailable, you’ll need to suggest another option. How to create a business channel on Telegram? (Tutorial)
from us


Telegram Ninja Learn | نینجا لرن
FROM American