tgoop.com/neuraldeep/1606
Create:
Last Update:
Last Update:
Schema-Guided Reasoning
В профильных LLM-каналах начал набирать популярность термин SGR (Schema-Guided Reasoning), но по какой-то причине народ не всегда понимает, что он обозначает, и зачем нужен. Никакого секрета нет, главное запомнить одно уравнение:
SGR = SO + COT
Из чего складывается Schema-Guided Reasoning:
Мы как бы «заставляем» модель пройти определенные этапы размышления перед тем как дать ответ, чтобы в результате вероятность корректных токенов ответа была выше.
Отличным примером использования такой техники является бот для дип-ресерча на открытых модельках sgr-deep-research, разработанный автором канала @neuraldeep:
Далее, эти шаги объединяются в цепочку (скриншот 2), которая представляет собой финальный ответ, и структура которой будет отправлена в LLM в качестве промпта.
И вот на этом этапе, становится понятно, зачем понадобился вообще SGR, и в чем его преимущество относительно других методов. Для того, чтобы сгенерировать следующий шаг в размышлениях, LLM обязательно сгенерирует:
Для больших моделей, такой подход часто избыточен - они и так достаточно умные, чтобы рассуждать прямо "из коробки", и всегда следовать нужной инструкции.
Но если ваша модель относительно небольшая, и может легко отклоняться от инструкций, или она недостаточно хорошо их выполняет, то такие вот "рельсы" в виде Structured Output + зашитый в ответ процесс размышлений в стиле Chain-Of-Thought могут дать значительный прирост качества на ряде задач.
Конечно, у такого подхода есть и минусы, и его тоже нужно правильно готовить, но об этом как-нибудь в другой раз
@korneychukov