NEURALDEEP Telegram 1350
Можно запускать новые Enterprise RAG эксперименты!

49 человек попросило запустить заново Enterprise RAG Challenge Submission API, чтобы можно было поставить еще несколько экспериментов.

Он запущен по новому адресу - https://rag.abdullin.com

Можете отправлять свои новые эксперименты туда. Только, пожалуйста, не забывайте заполнять форму с протоколом эксперимента. Так мы сможем потом подвести итоги и проанализировать.

Самый интересный сейчас момент - это полностью локальные системы, у которых локально работает все - parsing/OCR, embeddings (если они есть) и LLM. В Leaderboards у нас пока помечены как локальные системы только те архитектуры, в которых LLM локальный. Я потом постараюсь добавить колонку для Fully Local.

Если верить цифрам R-Score/G-Score, узкое место полностью локальных систем - это retrieval. Если в облаке openai large embeddings творят чудеса, то с локальными системами еще предстоит разобраться.

Тут дополнительно варианты разные варианты retrieval в Enterprise RAG Challenge уже изучали Valerii и Илья (см https://www.tgoop.com/neuraldeep/1348 в NeuralDeep).

Мне кажется перспективным направлением решение Dmitry Buykin. Оно работает в облаке, но вместо embeddings использует онтологии с SO/CoT чеклистами. Теоретически тут “R Score” может упасть не так сильно при переносе на локальные модели.

Ваш, @llm_under_hood 🤗

PS: Если останется интерес, то можно попробовать через пару месяцев прогнать новый раунд ERC. С тем же генератором вопросов, но с новыми файлами.



tgoop.com/neuraldeep/1350
Create:
Last Update:

Можно запускать новые Enterprise RAG эксперименты!

49 человек попросило запустить заново Enterprise RAG Challenge Submission API, чтобы можно было поставить еще несколько экспериментов.

Он запущен по новому адресу - https://rag.abdullin.com

Можете отправлять свои новые эксперименты туда. Только, пожалуйста, не забывайте заполнять форму с протоколом эксперимента. Так мы сможем потом подвести итоги и проанализировать.

Самый интересный сейчас момент - это полностью локальные системы, у которых локально работает все - parsing/OCR, embeddings (если они есть) и LLM. В Leaderboards у нас пока помечены как локальные системы только те архитектуры, в которых LLM локальный. Я потом постараюсь добавить колонку для Fully Local.

Если верить цифрам R-Score/G-Score, узкое место полностью локальных систем - это retrieval. Если в облаке openai large embeddings творят чудеса, то с локальными системами еще предстоит разобраться.

Тут дополнительно варианты разные варианты retrieval в Enterprise RAG Challenge уже изучали Valerii и Илья (см https://www.tgoop.com/neuraldeep/1348 в NeuralDeep).

Мне кажется перспективным направлением решение Dmitry Buykin. Оно работает в облаке, но вместо embeddings использует онтологии с SO/CoT чеклистами. Теоретически тут “R Score” может упасть не так сильно при переносе на локальные модели.

Ваш, @llm_under_hood 🤗

PS: Если останется интерес, то можно попробовать через пару месяцев прогнать новый раунд ERC. С тем же генератором вопросов, но с новыми файлами.

BY Neural Deep


Share with your friend now:
tgoop.com/neuraldeep/1350

View MORE
Open in Telegram


Telegram News

Date: |

Among the requests, the Brazilian electoral Court wanted to know if they could obtain data on the origins of malicious content posted on the platform. According to the TSE, this would enable the authorities to track false content and identify the user responsible for publishing it in the first place. Telegram channels enable users to broadcast messages to multiple users simultaneously. Like on social media, users need to subscribe to your channel to get access to your content published by one or more administrators. Each account can create up to 10 public channels Your posting frequency depends on the topic of your channel. If you have a news channel, it’s OK to publish new content every day (or even every hour). For other industries, stick with 2-3 large posts a week. How to create a business channel on Telegram? (Tutorial)
from us


Telegram Neural Deep
FROM American