NEURALDEEP Telegram 1255
У Anthropic пару недель назад вышел пост про агентов: https://www.anthropic.com/research/building-effective-agents

Он прекрасен тем, что определяет, что является агентом, а что не является. С точки зрения авторов поста, агент = система, в которой языковые модели динамически управляют собственными вызовами и инструментами, контролируя выполнение какой-то задачи.

Авторы утверждают, что для большинства случаев агенты не нужны: чем проще решение, тем лучше. С чем я полностью согласен 👏

Основное содержание поста — примитивы и паттерны оркестрирования языковых моделей без агентов. Основной примитив: улучшенная языковая модель, которая имеет доступ к инструментам, поиску и памяти. Этот примитив может быть реализован по-разному, например через конечное число последовательных вызовов языковой модели.

🔹Паттерн 1: цепочка промптов
Если задача разбивается на несколько последовательных подзадач, их можно решать отдельными вызовами языковой модели. Например, если вы хотите сделать систему, пишущую книги, вы сначала делаете вызов для генерации названия книги, потом отдельные вызовы для краткого описания, содержания, выжимок глав и непосредственно самих глав.

🔹Паттерн 2: маршрутизация
Если ваше приложение разбивается на несколько возможных параллельных путей, то стоит сделать классификатор, который будет определять нужный путь, и специализированные промпты под каждый из путей. Например, если вы делаете чатбот с несколькими независимыми функциями (рекомендация фильмов, ответы на вопросы по фильмам, чат на общие темы), то стоит использовать этот паттерн. В древних чатботах часто был детектор интентов, который делал ровно это 👴

🔹Паттерн 3: параллелизация
Если задача разбивается на несколько параллельных подзадач, то стоит их и вызывать параллельно. Например, если вам нужно извлечь огромный JSON из текста или переписки, возможно вам стоит извлекать его по кусочкам. Отличие от маршрутизации в том, что в ней нам нужна была только одна ветка, а тут нам нужны результаты всех вызовов.

🔹Паттерн 4: ведущий-ведомый 😭
То же самое, что и параллелизация, только с динамическим количеством и содержанием подзадач. Например, так можно делать агрегацию результатов поиска.

🔹Паттерн 5: цикл оценки
Если есть чёткие критерии оценки качества выполнения задачи, то можно одной языковой моделью решать задачу, а другой — оценивать качество решения и давать обратную связь. И делать это в цикле. Это может работать много где, например в переводе текстов.

Ну и наконец последний паттерн — агенты, которые совершают действия в определенной среде, получают от среды обратную связь, и снова совершают действия.

Мне в разных местах в разное время пришлось использовать первые 3 паттерна. При этом тогда я не формулировал их как отдельные паттерны. Это не какие-то абстрактные штуки, это кристаллизация того, как удобно и просто строить системы (как и любые другие паттерны проектирования).
Please open Telegram to view this post
VIEW IN TELEGRAM



tgoop.com/neuraldeep/1255
Create:
Last Update:

У Anthropic пару недель назад вышел пост про агентов: https://www.anthropic.com/research/building-effective-agents

Он прекрасен тем, что определяет, что является агентом, а что не является. С точки зрения авторов поста, агент = система, в которой языковые модели динамически управляют собственными вызовами и инструментами, контролируя выполнение какой-то задачи.

Авторы утверждают, что для большинства случаев агенты не нужны: чем проще решение, тем лучше. С чем я полностью согласен 👏

Основное содержание поста — примитивы и паттерны оркестрирования языковых моделей без агентов. Основной примитив: улучшенная языковая модель, которая имеет доступ к инструментам, поиску и памяти. Этот примитив может быть реализован по-разному, например через конечное число последовательных вызовов языковой модели.

🔹Паттерн 1: цепочка промптов
Если задача разбивается на несколько последовательных подзадач, их можно решать отдельными вызовами языковой модели. Например, если вы хотите сделать систему, пишущую книги, вы сначала делаете вызов для генерации названия книги, потом отдельные вызовы для краткого описания, содержания, выжимок глав и непосредственно самих глав.

🔹Паттерн 2: маршрутизация
Если ваше приложение разбивается на несколько возможных параллельных путей, то стоит сделать классификатор, который будет определять нужный путь, и специализированные промпты под каждый из путей. Например, если вы делаете чатбот с несколькими независимыми функциями (рекомендация фильмов, ответы на вопросы по фильмам, чат на общие темы), то стоит использовать этот паттерн. В древних чатботах часто был детектор интентов, который делал ровно это 👴

🔹Паттерн 3: параллелизация
Если задача разбивается на несколько параллельных подзадач, то стоит их и вызывать параллельно. Например, если вам нужно извлечь огромный JSON из текста или переписки, возможно вам стоит извлекать его по кусочкам. Отличие от маршрутизации в том, что в ней нам нужна была только одна ветка, а тут нам нужны результаты всех вызовов.

🔹Паттерн 4: ведущий-ведомый 😭
То же самое, что и параллелизация, только с динамическим количеством и содержанием подзадач. Например, так можно делать агрегацию результатов поиска.

🔹Паттерн 5: цикл оценки
Если есть чёткие критерии оценки качества выполнения задачи, то можно одной языковой моделью решать задачу, а другой — оценивать качество решения и давать обратную связь. И делать это в цикле. Это может работать много где, например в переводе текстов.

Ну и наконец последний паттерн — агенты, которые совершают действия в определенной среде, получают от среды обратную связь, и снова совершают действия.

Мне в разных местах в разное время пришлось использовать первые 3 паттерна. При этом тогда я не формулировал их как отдельные паттерны. Это не какие-то абстрактные штуки, это кристаллизация того, как удобно и просто строить системы (как и любые другие паттерны проектирования).

BY Neural Deep


Share with your friend now:
tgoop.com/neuraldeep/1255

View MORE
Open in Telegram


Telegram News

Date: |

Users are more open to new information on workdays rather than weekends. As of Thursday, the SUCK Channel had 34,146 subscribers, with only one message dated August 28, 2020. It was an announcement stating that police had removed all posts on the channel because its content “contravenes the laws of Hong Kong.” How to Create a Private or Public Channel on Telegram? Matt Hussey, editorial director at NEAR Protocol also responded to this news with “#meIRL”. Just as you search “Bear Market Screaming” in Telegram, you will see a Pepe frog yelling as the group’s featured image. On Tuesday, some local media outlets included Sing Tao Daily cited sources as saying the Hong Kong government was considering restricting access to Telegram. Privacy Commissioner for Personal Data Ada Chung told to the Legislative Council on Monday that government officials, police and lawmakers remain the targets of “doxxing” despite a privacy law amendment last year that criminalised the malicious disclosure of personal information.
from us


Telegram Neural Deep
FROM American