NEURAL_CAT Telegram 118
Нейронный Кот
Проклятые токены 🤯 Замечали/задумывались, что всего один случайный токен может привести выход LLM к неправильному ответу или в случае с маленькими моделями — к бреду? Условно, на запрос Реализуй эндпоинт на FastAPI ... модель может случайно сгенерить токен…
Боремся с проклятыми токенами 😎

Люблю статьи от авторов phi — очень простые с топорными методами, но работают хорошо.

В тех репорте phi-4 показали, что

🔹 Проклятые (и благословенные) токены существуют
🔹 Предложили, как с этим бороться

Для задач, где есть правильный ответ, мы можем найти токены, которые негативно или позитивно влияют на вероятность успешного ответа p(success)

Как найти такие токены? — авторы называют их pivotal tokens

Считаем условную вероятность, что ответ будет правильным при заданном префиксе ответа. То есть просто эмпирически считаем, какой процент правильных ответов будет при префиксе `import Flask`

Таким макаром находим все pivotal tokens в нашем трейн сете. И учим модель различать хорошие токены от плохих. Для этого формируем пары

prompt = promt + answer prefix
good response = good token
bad response = bad token


И запускаем DPO на этих парах. Еще раз: мы учим предсказывать только один токен! ⚠️

Если бы мы просто делали SFT или DPO на полных ответах, то учились бы предсказывать эти проклятые токены, которые негативно влияют на вероятность успешного ответа.

В таблице 9 можно посмотреть, как DPO на pivotal tokens (stage 1) накидывает в качестве по сравнению с обычным DPO и SFT

🤨 Меня удивило, что проклятыми токенами могут быть вполне безобидные токены в стиле предсказал "that" вместо "the" (см. скрины в треде)

📖 Статья

@neural_cat
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥14👍41



tgoop.com/neural_cat/118
Create:
Last Update:

Боремся с проклятыми токенами 😎

Люблю статьи от авторов phi — очень простые с топорными методами, но работают хорошо.

В тех репорте phi-4 показали, что

🔹 Проклятые (и благословенные) токены существуют
🔹 Предложили, как с этим бороться

Для задач, где есть правильный ответ, мы можем найти токены, которые негативно или позитивно влияют на вероятность успешного ответа p(success)

Как найти такие токены? — авторы называют их pivotal tokens

Считаем условную вероятность, что ответ будет правильным при заданном префиксе ответа. То есть просто эмпирически считаем, какой процент правильных ответов будет при префиксе `import Flask`

Таким макаром находим все pivotal tokens в нашем трейн сете. И учим модель различать хорошие токены от плохих. Для этого формируем пары

prompt = promt + answer prefix
good response = good token
bad response = bad token


И запускаем DPO на этих парах. Еще раз: мы учим предсказывать только один токен! ⚠️

Если бы мы просто делали SFT или DPO на полных ответах, то учились бы предсказывать эти проклятые токены, которые негативно влияют на вероятность успешного ответа.

В таблице 9 можно посмотреть, как DPO на pivotal tokens (stage 1) накидывает в качестве по сравнению с обычным DPO и SFT

🤨 Меня удивило, что проклятыми токенами могут быть вполне безобидные токены в стиле предсказал "that" вместо "the" (см. скрины в треде)

📖 Статья

@neural_cat

BY Нейронный Кот





Share with your friend now:
tgoop.com/neural_cat/118

View MORE
Open in Telegram


Telegram News

Date: |

But a Telegram statement also said: "Any requests related to political censorship or limiting human rights such as the rights to free speech or assembly are not and will not be considered." The best encrypted messaging apps A Hong Kong protester with a petrol bomb. File photo: Dylan Hollingsworth/HKFP. How to Create a Private or Public Channel on Telegram? Just at this time, Bitcoin and the broader crypto market have dropped to new 2022 lows. The Bitcoin price has tanked 10 percent dropping to $20,000. On the other hand, the altcoin space is witnessing even more brutal correction. Bitcoin has dropped nearly 60 percent year-to-date and more than 70 percent since its all-time high in November 2021.
from us


Telegram Нейронный Кот
FROM American