NEURAL Telegram 9995
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
🌟 Периодическая таблица машинного обучения.

Исследователи из МiT, Microsoft и Goggle создали фреймворк, который может изменить подход к разработке алгоритмов машинного обучения - I-Con (Information Contrastive Learning).

Он объединил и систематизировал более 20 классических методов ML — от кластеризации до контрастивного обучения в единую структуру, напоминающую периодическую таблицу. Как и ее химический прародитель, эта таблица не только упорядочивает известные алгоритмы, но и указывает на пробелы, где могут существовать еще не открытые методы.

В основе I-Con лежит уравнение, минимизирующее расхождение Кульбака-Лейблера между двумя распределениями: «идеальным» (на основе данных) и тем, что обучает модель. Это уравнение, найденное почти случайно, стало ключом к объединению таких разных подходов, как k-средних, SimCLR и PCA.

Для примера - алгоритм кластеризации в I-Con рассматривается как способ выравнивания распределений сходства точек, а контрастивное обучение — как работа с аугментациями изображений. Такая унификация позволила ресерчерам буквально «скрещивать» методы: комбинация идей из контрастивного обучения и спектральной кластеризации дала новый алгоритм, который на 8% точнее предсказывает классы изображений без меток.

I-Con — не просто теория. В экспериментах на ImageNet-1K фреймворк показал, как перенос приемов между областями машинного обучения улучшает результаты. Например, техника дебайсинга (исправления смещений в данных), изначально созданная для контрастивного обучения, повысила точность кластеризации. А добавление проходов по neighbor propagation в алгоритмы помогло моделям лучше учитывать локальную структуру данных.

Но главное преимущество I-Con — его предсказательная сила. Пустые клетки в таблице указывают на гипотетические алгоритмы, которые ещё предстоит создать. Иными словами, комбинируя подходы из supervised и unsupervised обучения, можно разработать методы, эффективные для задач с частично размеченными данными. Уже сейчас фреймворк помогает избежать «изобретения велосипеда»: вместо того чтобы перебирать варианты наугад, исследователи могут целенаправленно комбинировать элементы из таблицы.

Пока рано говорить, станет ли I-Con общепринятым стандартом, но его потенциал очевиден. Как минимум, он предлагает свежий взгляд на машинное обучение — не как на набор разрозненных алгоритмов, а как на систему со скрытой структурой. И если химики когда-то заполняли пустоты в таблице Менделеева, то ML-исследователи теперь могут делать то же самое — осознанно, а не методом проб и ошибок.

▶️Практическое применение:

# Clone the repo
git clone https://github.com/ShadeAlsha/ICon.git
cd ICon

# Create a conda env
conda create -n ICon
conda activate ICon

# Install dependencies
pip install -e .

# Evaluate Models
cd ICon
python evaluate.py

# After evaluation, see the results in tensorboard
cd ../logs/evaluate
tensorboard --logdir .

# Train a Model
cd ICon
python train.py



🟡Страница проекта
🟡Техотчет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #ICon #Framework #Algorithms
Please open Telegram to view this post
VIEW IN TELEGRAM



tgoop.com/neural/9995
Create:
Last Update:

🌟 Периодическая таблица машинного обучения.

Исследователи из МiT, Microsoft и Goggle создали фреймворк, который может изменить подход к разработке алгоритмов машинного обучения - I-Con (Information Contrastive Learning).

Он объединил и систематизировал более 20 классических методов ML — от кластеризации до контрастивного обучения в единую структуру, напоминающую периодическую таблицу. Как и ее химический прародитель, эта таблица не только упорядочивает известные алгоритмы, но и указывает на пробелы, где могут существовать еще не открытые методы.

В основе I-Con лежит уравнение, минимизирующее расхождение Кульбака-Лейблера между двумя распределениями: «идеальным» (на основе данных) и тем, что обучает модель. Это уравнение, найденное почти случайно, стало ключом к объединению таких разных подходов, как k-средних, SimCLR и PCA.

Для примера - алгоритм кластеризации в I-Con рассматривается как способ выравнивания распределений сходства точек, а контрастивное обучение — как работа с аугментациями изображений. Такая унификация позволила ресерчерам буквально «скрещивать» методы: комбинация идей из контрастивного обучения и спектральной кластеризации дала новый алгоритм, который на 8% точнее предсказывает классы изображений без меток.

I-Con — не просто теория. В экспериментах на ImageNet-1K фреймворк показал, как перенос приемов между областями машинного обучения улучшает результаты. Например, техника дебайсинга (исправления смещений в данных), изначально созданная для контрастивного обучения, повысила точность кластеризации. А добавление проходов по neighbor propagation в алгоритмы помогло моделям лучше учитывать локальную структуру данных.

Но главное преимущество I-Con — его предсказательная сила. Пустые клетки в таблице указывают на гипотетические алгоритмы, которые ещё предстоит создать. Иными словами, комбинируя подходы из supervised и unsupervised обучения, можно разработать методы, эффективные для задач с частично размеченными данными. Уже сейчас фреймворк помогает избежать «изобретения велосипеда»: вместо того чтобы перебирать варианты наугад, исследователи могут целенаправленно комбинировать элементы из таблицы.

Пока рано говорить, станет ли I-Con общепринятым стандартом, но его потенциал очевиден. Как минимум, он предлагает свежий взгляд на машинное обучение — не как на набор разрозненных алгоритмов, а как на систему со скрытой структурой. И если химики когда-то заполняли пустоты в таблице Менделеева, то ML-исследователи теперь могут делать то же самое — осознанно, а не методом проб и ошибок.

▶️Практическое применение:

# Clone the repo
git clone https://github.com/ShadeAlsha/ICon.git
cd ICon

# Create a conda env
conda create -n ICon
conda activate ICon

# Install dependencies
pip install -e .

# Evaluate Models
cd ICon
python evaluate.py

# After evaluation, see the results in tensorboard
cd ../logs/evaluate
tensorboard --logdir .

# Train a Model
cd ICon
python train.py



🟡Страница проекта
🟡Техотчет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #ICon #Framework #Algorithms

BY Neural Networks | Нейронные сети


Share with your friend now:
tgoop.com/neural/9995

View MORE
Open in Telegram


Telegram News

Date: |

Just as the Bitcoin turmoil continues, crypto traders have taken to Telegram to voice their feelings. Crypto investors can reduce their anxiety about losses by joining the “Bear Market Screaming Therapy Group” on Telegram. How to Create a Private or Public Channel on Telegram? Read now Matt Hussey, editorial director of NEAR Protocol (and former editor-in-chief of Decrypt) responded to the news of the Telegram group with “#meIRL.” How to build a private or public channel on Telegram?
from us


Telegram Neural Networks | Нейронные сети
FROM American