NEURAL Telegram 10184
🔥 10 Python-библиотек, которые должен знать каждый разработчик LLM и GenAI

1️⃣ [LangChain](https://www.langchain.com/)
Фреймворк для создания LLM-приложений, агентов и инструментов.
Позволяет соединять языковые модели с базами данных, API и внешними сервисами.
Идеален для построения RAG-систем, чат-ботов и аналитических ассистентов.

2️⃣ [LangGraph](https://github.com/langchain-ai/langgraph)
Надстройка над LangChain для создания сложных многоагентных систем.
Поддерживает условную логику, ветвления и сохранение состояния.
Используется для разработки автономных агентов, которые сотрудничают и планируют задачи.

3️⃣ [Docling](https://github.com/DS4SD/docling)
Инструмент для анализа и извлечения информации из документов.
Объединяет LLM, LangChain и RAG-подход для “умного” чтения PDF, таблиц и сканов.
Подходит для систем документооборота, юридических и научных данных.

4️⃣ [OpenAI Python SDK](https://github.com/openai/openai-python)
Официальная библиотека для работы с моделями GPT-4o, DALL-E, Whisper и другими API OpenAI.
Позволяет вызывать модели, генерировать текст, изображения и транскрибировать аудио в несколько строк кода.
Главный инструмент для интеграции мощных моделей в свои Python-приложения.

5️⃣ [Markitdown (Microsoft)](https://github.com/microsoft/markitdown)
Библиотека от Microsoft для создания интерфейсов LLM-приложений с использованием Markdown.
Позволяет описывать UI и рабочие процессы прямо в тексте — быстро, удобно и без JavaScript.
Полезна для автоматизации LLM-воркфлоу и простых чат-интерфейсов.

6️⃣ [Streamlit](https://streamlit.io/)
Фреймворк для построения интерактивных AI-дашбордов и веб-приложений.
Позволяет визуализировать результаты модели, строить формы ввода, графики и интерактивные элементы.
Отличный выбор для быстрой демонстрации или внутреннего прототипа GenAI-проекта.

7️⃣ [FastAPI](https://fastapi.tiangolo.com/)
Высокопроизводительный фреймворк для создания REST и WebSocket API.
Идеален для деплоя ML и LLM моделей в продакшене.
Быстрый, типизированный и легко масштабируемый — стандарт де-факто в AI-бэкендах.

8️⃣ [Faiss](https://github.com/facebookresearch/faiss)
Библиотека от Meta для векторного поиска и кластеризации эмбеддингов.
Молниеносно ищет похожие тексты, изображения или документы в огромных наборах данных.
Необходима в RAG-системах, рекомендациях и семантическом поиске.

9️⃣ [SentenceTransformers](https://www.sbert.net/)
Набор моделей для генерации эмбеддингов предложений, текстов и документов.
Даёт качественные векторные представления для поиска, кластеризации и анализа смысловой близости.
Отлично работает вместе с Faiss и LangChain.

🔟 [MLflow](https://mlflow.org/)
Инструмент для трекинга экспериментов, управления моделями и деплоя ML-проектов.
Позволяет отслеживать метрики, сравнивать версии и хранить модели в централизованном реестре.
Незаменим при построении воспроизводимого и управляемого MLOps-процесса.

⚙️ Эти библиотеки формируют единый стек для создания LLM-агентов, RAG-систем, аналитических ассистентов и AI-сервисов — от эксперимента до продакшена.



tgoop.com/neural/10184
Create:
Last Update:

🔥 10 Python-библиотек, которые должен знать каждый разработчик LLM и GenAI

1️⃣ [LangChain](https://www.langchain.com/)
Фреймворк для создания LLM-приложений, агентов и инструментов.
Позволяет соединять языковые модели с базами данных, API и внешними сервисами.
Идеален для построения RAG-систем, чат-ботов и аналитических ассистентов.

2️⃣ [LangGraph](https://github.com/langchain-ai/langgraph)
Надстройка над LangChain для создания сложных многоагентных систем.
Поддерживает условную логику, ветвления и сохранение состояния.
Используется для разработки автономных агентов, которые сотрудничают и планируют задачи.

3️⃣ [Docling](https://github.com/DS4SD/docling)
Инструмент для анализа и извлечения информации из документов.
Объединяет LLM, LangChain и RAG-подход для “умного” чтения PDF, таблиц и сканов.
Подходит для систем документооборота, юридических и научных данных.

4️⃣ [OpenAI Python SDK](https://github.com/openai/openai-python)
Официальная библиотека для работы с моделями GPT-4o, DALL-E, Whisper и другими API OpenAI.
Позволяет вызывать модели, генерировать текст, изображения и транскрибировать аудио в несколько строк кода.
Главный инструмент для интеграции мощных моделей в свои Python-приложения.

5️⃣ [Markitdown (Microsoft)](https://github.com/microsoft/markitdown)
Библиотека от Microsoft для создания интерфейсов LLM-приложений с использованием Markdown.
Позволяет описывать UI и рабочие процессы прямо в тексте — быстро, удобно и без JavaScript.
Полезна для автоматизации LLM-воркфлоу и простых чат-интерфейсов.

6️⃣ [Streamlit](https://streamlit.io/)
Фреймворк для построения интерактивных AI-дашбордов и веб-приложений.
Позволяет визуализировать результаты модели, строить формы ввода, графики и интерактивные элементы.
Отличный выбор для быстрой демонстрации или внутреннего прототипа GenAI-проекта.

7️⃣ [FastAPI](https://fastapi.tiangolo.com/)
Высокопроизводительный фреймворк для создания REST и WebSocket API.
Идеален для деплоя ML и LLM моделей в продакшене.
Быстрый, типизированный и легко масштабируемый — стандарт де-факто в AI-бэкендах.

8️⃣ [Faiss](https://github.com/facebookresearch/faiss)
Библиотека от Meta для векторного поиска и кластеризации эмбеддингов.
Молниеносно ищет похожие тексты, изображения или документы в огромных наборах данных.
Необходима в RAG-системах, рекомендациях и семантическом поиске.

9️⃣ [SentenceTransformers](https://www.sbert.net/)
Набор моделей для генерации эмбеддингов предложений, текстов и документов.
Даёт качественные векторные представления для поиска, кластеризации и анализа смысловой близости.
Отлично работает вместе с Faiss и LangChain.

🔟 [MLflow](https://mlflow.org/)
Инструмент для трекинга экспериментов, управления моделями и деплоя ML-проектов.
Позволяет отслеживать метрики, сравнивать версии и хранить модели в централизованном реестре.
Незаменим при построении воспроизводимого и управляемого MLOps-процесса.

⚙️ Эти библиотеки формируют единый стек для создания LLM-агентов, RAG-систем, аналитических ассистентов и AI-сервисов — от эксперимента до продакшена.

BY Neural Networks | Нейронные сети


Share with your friend now:
tgoop.com/neural/10184

View MORE
Open in Telegram


Telegram News

Date: |

With Bitcoin down 30% in the past week, some crypto traders have taken to Telegram to “voice” their feelings. A few years ago, you had to use a special bot to run a poll on Telegram. Now you can easily do that yourself in two clicks. Hit the Menu icon and select “Create Poll.” Write your question and add up to 10 options. Running polls is a powerful strategy for getting feedback from your audience. If you’re considering the possibility of modifying your channel in any way, be sure to ask your subscribers’ opinions first. The initiatives announced by Perekopsky include monitoring the content in groups. According to the executive, posts identified as lacking context or as containing false information will be flagged as a potential source of disinformation. The content is then forwarded to Telegram's fact-checking channels for analysis and subsequent publication of verified information. Hui said the messages, which included urging the disruption of airport operations, were attempts to incite followers to make use of poisonous, corrosive or flammable substances to vandalize police vehicles, and also called on others to make weapons to harm police. The main design elements of your Telegram channel include a name, bio (brief description), and avatar. Your bio should be:
from us


Telegram Neural Networks | Нейронные сети
FROM American