Warning: file_put_contents(aCache/aDaily/post/neural/-10053-10054-10055-10056-10053-): Failed to open stream: No space left on device in /var/www/tgoop/post.php on line 50
Neural Networks | Нейронные сети@neural P.10055
NEURAL Telegram 10055
Forwarded from Machinelearning
🌟 LLM Speedrunning Benchmark: ИИ-ассистенты пока не способны улучшить код, написанный человеком.

Пока одни восхищаются способностью ИИ писать код по текстовому описанию, в компании Марка Цукерберга решили устроить ему настоящее испытание на профессионализм и создали «The Automated LLM Speedrunning Benchmark» — полигон, где нейросетям предлагается не просто написать что-то с нуля, а воспроизвести и улучшить уже существующий код.

В качестве задачи был взят реальный проект NanoGPT, где сообщество энтузиастов соревнуется в максимальном ускорении обучения GPT-2, небольшой языковой модели. Цель - не просто скопировать, а понять и применить конкретную оптимизацию, которую до этого внедрил человек.

🟡Суть эксперимента

ИИ-агенту дают исходный скрипт предыдущего рекордсмена и подсказку одного из 3 уровней: от псевдокода с описанием изменений до полноценной мини-статьи, объясняющей суть улучшения. Агент, получив эти данные, должен внести правки в код так, чтобы приблизиться к скорости обучения следующего рекордсмена.

Эффективность мерили метрикой FSR (Fraction of Speedup Recovered), это доля восстановленного ускорения. Если человек ускорил процесс на 10 минут, а ИИ смог добиться ускорения в 5 минут, его результат — 50% FSR. Такая система позволяет оценить не абстрактные способности модели, а ее умение работать с конкретными, практическими задачами по оптимизации.

🟡Результаты

Итоги оказались, мягко говоря, отрезвляющими. Даже топовые модели (Claude 3.7 Sonnet и Gemini 2.5 Pro), показали очень скромные результаты.

С лучшими подсказками (псевдокод и детальное описание) самые успешные агенты с трудом смогли воспроизвести хотя бы 40% от прироста производительности, достигнутого человеком. Без подсказок их производительность была и вовсе близка к нулю.

Разбор полетов бенчмарка показал, что ИИ-агенты часто генерируют либо просто неработающий код с ошибками времени выполнения, либо код, который компилируется, но не дает никакого прироста скорости, а иногда даже замедляет процесс.

🟡Фреймворк

Авторы не просто опубликовали статью, а выложили весь фреймворк в открытый доступ, так что любой желающий может самостоятельно погонять практически любые модели.

В основе фреймворка лежит гибкий агентский каркас, который имитирует рабочий процесс исследователя: генерация идеи, реализация в коде, запуск эксперимента и анализ результатов.

Каждая итерация ИИ-агента аккуратно сохраняется в отдельную версию, создавая полную историю всех правок, от удачных до провальных.

Установка максимально проста, а для тех, кто хочет воспроизвести эксперименты из статьи, авторы приложили готовые скрипты. Также можно легко добавить и протестировать другие модели, просто создав для них конфиг или дать ИИ другую задачу, не связанную с NanoGPT - определять кастомные таски тоже можно.


📌Лицензирование: MIT License.


🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #Benchmark
Please open Telegram to view this post
VIEW IN TELEGRAM



tgoop.com/neural/10055
Create:
Last Update:

🌟 LLM Speedrunning Benchmark: ИИ-ассистенты пока не способны улучшить код, написанный человеком.

Пока одни восхищаются способностью ИИ писать код по текстовому описанию, в компании Марка Цукерберга решили устроить ему настоящее испытание на профессионализм и создали «The Automated LLM Speedrunning Benchmark» — полигон, где нейросетям предлагается не просто написать что-то с нуля, а воспроизвести и улучшить уже существующий код.

В качестве задачи был взят реальный проект NanoGPT, где сообщество энтузиастов соревнуется в максимальном ускорении обучения GPT-2, небольшой языковой модели. Цель - не просто скопировать, а понять и применить конкретную оптимизацию, которую до этого внедрил человек.

🟡Суть эксперимента

ИИ-агенту дают исходный скрипт предыдущего рекордсмена и подсказку одного из 3 уровней: от псевдокода с описанием изменений до полноценной мини-статьи, объясняющей суть улучшения. Агент, получив эти данные, должен внести правки в код так, чтобы приблизиться к скорости обучения следующего рекордсмена.

Эффективность мерили метрикой FSR (Fraction of Speedup Recovered), это доля восстановленного ускорения. Если человек ускорил процесс на 10 минут, а ИИ смог добиться ускорения в 5 минут, его результат — 50% FSR. Такая система позволяет оценить не абстрактные способности модели, а ее умение работать с конкретными, практическими задачами по оптимизации.

🟡Результаты

Итоги оказались, мягко говоря, отрезвляющими. Даже топовые модели (Claude 3.7 Sonnet и Gemini 2.5 Pro), показали очень скромные результаты.

С лучшими подсказками (псевдокод и детальное описание) самые успешные агенты с трудом смогли воспроизвести хотя бы 40% от прироста производительности, достигнутого человеком. Без подсказок их производительность была и вовсе близка к нулю.

Разбор полетов бенчмарка показал, что ИИ-агенты часто генерируют либо просто неработающий код с ошибками времени выполнения, либо код, который компилируется, но не дает никакого прироста скорости, а иногда даже замедляет процесс.

🟡Фреймворк

Авторы не просто опубликовали статью, а выложили весь фреймворк в открытый доступ, так что любой желающий может самостоятельно погонять практически любые модели.

В основе фреймворка лежит гибкий агентский каркас, который имитирует рабочий процесс исследователя: генерация идеи, реализация в коде, запуск эксперимента и анализ результатов.

Каждая итерация ИИ-агента аккуратно сохраняется в отдельную версию, создавая полную историю всех правок, от удачных до провальных.

Установка максимально проста, а для тех, кто хочет воспроизвести эксперименты из статьи, авторы приложили готовые скрипты. Также можно легко добавить и протестировать другие модели, просто создав для них конфиг или дать ИИ другую задачу, не связанную с NanoGPT - определять кастомные таски тоже можно.


📌Лицензирование: MIT License.


🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #Benchmark

BY Neural Networks | Нейронные сети







Share with your friend now:
tgoop.com/neural/10055

View MORE
Open in Telegram


Telegram News

Date: |

Don’t publish new content at nighttime. Since not all users disable notifications for the night, you risk inadvertently disturbing them. Those being doxxed include outgoing Chief Executive Carrie Lam Cheng Yuet-ngor, Chung and police assistant commissioner Joe Chan Tung, who heads police's cyber security and technology crime bureau. Each account can create up to 10 public channels 1What is Telegram Channels? Over 33,000 people sent out over 1,000 doxxing messages in the group. Although the administrators tried to delete all of the messages, the posting speed was far too much for them to keep up.
from us


Telegram Neural Networks | Нейронные сети
FROM American