Warning: mkdir(): No space left on device in /var/www/tgoop/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/misha_writes_code/--): Failed to open stream: No such file or directory in /var/www/tgoop/post.php on line 50
Миша пишет код@misha_writes_code P.155
MISHA_WRITES_CODE Telegram 155
С развитием языковых моделей социальная инженерия тоже выходит на новый уровень. Обманывать простых работяг становится не так интересно, как обманывать сложных работяг)

2 дня назад вышел пост, а с ним и статья о том, как удается из ChatGPT извлекать данные, на которых он обучался. Причем в этот раз даже не приходится писать хитрые промпты про больную бабушку, достаточно лишь попросить бесконечно выводить какое-нибудь слово. Единственное условие - надо попасть в существующий токен. И пост и статья написаны очень популярным языком, поэтому даже не погруженному в тему человеку (мне) достаточно легко воспринимать текст.

Ну можно получить training data и что с того?

Вместе с какими-то случайными данными также удается достать и конфиденциальную информацию, например, номера телефонов или адреса. В посте авторы приводят похожий пример с text-to-image моделями (например, stable diffusion), в которых можно схожим образом получить почти точную фотографию существующего человека, введя его имя (требуется, чтобы человек был среди тренировочных данных). (картинка в комментах)

Почему это происходит?

Приведу цитату из статьи, которая отвечает на этот вопрос. TLDR: скорее всего модель "забывает" промпт и начинает генерировать случайные данные из памяти.

> During pre-training ... multiple documents are concatenated together to form a single training example, with a special token such as <| endoftext |> used delineate the document boundary. This causes the LM to learn to “reset” when it sees the <| endoftext |> token. ... our attack works because it creates an effect similar to this token.

Ну а training data модели начинают выдавать из-за того, что они обычно переучены, так как это помогает сильно экономить на инференсе. Из-за чего модели запоминают данные, на которых обучались. Приведу опять же цитату из статьи:

> .. the 7B parameter LLaMA-2 model trained for 2 trillion tokens outperforms the 13B parameter model trained for just 1 trillion tokens. ... work has shown that this can increase memorization ...

[obsidian]
🔥5👍3😱2🥴2



tgoop.com/misha_writes_code/155
Create:
Last Update:

С развитием языковых моделей социальная инженерия тоже выходит на новый уровень. Обманывать простых работяг становится не так интересно, как обманывать сложных работяг)

2 дня назад вышел пост, а с ним и статья о том, как удается из ChatGPT извлекать данные, на которых он обучался. Причем в этот раз даже не приходится писать хитрые промпты про больную бабушку, достаточно лишь попросить бесконечно выводить какое-нибудь слово. Единственное условие - надо попасть в существующий токен. И пост и статья написаны очень популярным языком, поэтому даже не погруженному в тему человеку (мне) достаточно легко воспринимать текст.

Ну можно получить training data и что с того?

Вместе с какими-то случайными данными также удается достать и конфиденциальную информацию, например, номера телефонов или адреса. В посте авторы приводят похожий пример с text-to-image моделями (например, stable diffusion), в которых можно схожим образом получить почти точную фотографию существующего человека, введя его имя (требуется, чтобы человек был среди тренировочных данных). (картинка в комментах)

Почему это происходит?

Приведу цитату из статьи, которая отвечает на этот вопрос. TLDR: скорее всего модель "забывает" промпт и начинает генерировать случайные данные из памяти.

> During pre-training ... multiple documents are concatenated together to form a single training example, with a special token such as <| endoftext |> used delineate the document boundary. This causes the LM to learn to “reset” when it sees the <| endoftext |> token. ... our attack works because it creates an effect similar to this token.

Ну а training data модели начинают выдавать из-за того, что они обычно переучены, так как это помогает сильно экономить на инференсе. Из-за чего модели запоминают данные, на которых обучались. Приведу опять же цитату из статьи:

> .. the 7B parameter LLaMA-2 model trained for 2 trillion tokens outperforms the 13B parameter model trained for just 1 trillion tokens. ... work has shown that this can increase memorization ...

[obsidian]

BY Миша пишет код




Share with your friend now:
tgoop.com/misha_writes_code/155

View MORE
Open in Telegram


Telegram News

Date: |

fire bomb molotov November 18 Dylan Hollingsworth yau ma tei “[The defendant] could not shift his criminal liability,” Hui said. A vandalised bank during the 2019 protest. File photo: May James/HKFP. Find your optimal posting schedule and stick to it. The peak posting times include 8 am, 6 pm, and 8 pm on social media. Try to publish serious stuff in the morning and leave less demanding content later in the day. To upload a logo, click the Menu icon and select “Manage Channel.” In a new window, hit the Camera icon.
from us


Telegram Миша пишет код
FROM American