MATLABTIPS Telegram 1668
🔵محاسبات معکوس پذیر:‌ آینده ی هوش مصنوعی؟🔵

بعضی وقتها که گوشی تان داغ میکند به این فکر میکنید که آیا در آینده گوشی ها یا کامپیوتر هایی می آیند که هیچوقت داغ نشوند؟ اصلا چرا یک وسیله ی محاسباتی باید داغ شود و گرما آزاد کند؟ امروزه یکی از چالش های عظیم هوش مصنوعی غلبه بر حجم محاسباتی بسیار عظیمی است که باعث آزاد شدن حجم زیادی از گرما می شود. در سال گذشته هوش مصنوعی بیشتر از کل کشور انگلستان انرژی مصرف کرده و در آموزش شبکه های عصبی از میزان عظیم کربن تولید شده در جو بحث می شود. به طور مثال آموزش مدل های زبانی عظیم GPT3 به اندازه ی ۱۰۰ کیلوگرم کربن به جو اضافه می کند! به این روند تازه آغاز شده است و در سالهای آینده به مشکل های بزرگتری منجر می شود. این از طرفی است که مغز انسان که می خواهیم آن را تقلید کنیم با تنها مصرف بیست وات کار میکند. اما قبل از پاسخ به این پرسش که منشا این همه تفاوت در کجاست باید سوال اساسی تری پرسید: اصلا چرا محاسبه باید گرما آزاد کند؟

اصل لانداوه )Landauer's principle) قانونی در ترمودینامیک است که هر عملیاتی غیر قابل معکوس که بر روی اطلاعات انجام می شود (مانند گیت های منطقی) منجر به آزاد کردن گرما می کند. میزان این گرما بزرگتر از k_B * T * Ln(2) است که در آن k_B ثابت بولتزمن و T دماست (در کلوین). دقت کنید که این میزان گرما بسیار بسیار پایین در حد ۲* ۱۰×-۲۱ ژول است. مقداری که گیت های امروزی فاصله ی زیادی با آن دارند (آن ها میلیاردها برابر بیشتر انرژی آزاد می کنند).

محاسبات معکوس ناپذیر شامل تمام مسیر های عملیاتی ای می شود که به صورت ادغام حداقل دو متغیر هستند. به طور مثال وقتی شما دو عدد را جمع می کنید نتیجه ی محاسبه عددی است که بر اساس آن نمی توان ورودی ها را تشخیص داد. اگر نتیجه ی عملیات جمع بین دو عدد صحیح ۴ باشد ورودی ها ممکن است ۱ و ۳ یا ۲ و ۲ یا ۳ و ۱ باشد (بدون در نظر گرفتن صفر). در پایه ای ترین سطح اصل لانداوه می گوید از دست رفتن اطلاعات (مثلا با یک محاسبه جمع یا پاک کردن حافظه) منجر به افزایش دما در محیط می شود چون اطلاعات از بین رفتنی نیست!

می توان چنین محاسباتی را در پایه ای ترین حالت خود یعنی به صورت گیت های منطقی بررسی کرد. به طور مثال تمامی گیت های منطقی به جز not معکوس ناپذیرند. از ریاضیات می دانیم تنها تابع هایی معکوس پذیر هستند که یک به یک باشند. وقتی این مسیر ها با هم ادغام (merge) می شوند این خاصیت از دست می رود. اما آیا می توان گیت ها رو طوری تغییر داد که محاسبه معکوس پذیر باشد. در نظریه این کار ممکن است. در رشته ی محاسبات معکوس پذیر تمرکز بر روی یافتن راه هایی است که چنین کاری را امکان پذیر می کند. به طور مثال می توان به جای خروجی دادن یه حالت برای عملگر xor آن را به صورت زیر داد:
(x, y) => (x, x xor y)
به این ترتیب می توان هر ورودی را بر اساس خروجی به درستی حدس زد! (خودتان امتحان کنید). دلیل این موضوع این است که این تابع یک به یک است. در سال ۱۹۶۳ Yves Lecerf ایده ی ماشین های تورینگ معکوس پذیر را مطرح کرد. با این حال او از اصل لانداوه بی خبر بود و به همین دلیل این ایده را دنبال نکرد. در سال ۱۹۷۳ چارلز بنت (Charles H. Bennett) که از پیشگامان محاسبات معکوس پذیر است نشان داد که ماشین تورینگ هم به صورت منطقی و هم به صورت ترمودینامیکی قابل معکوس کردن است!

بسیاری از پژوهشگران امروزه بر روی روش هایی کار میکنند که چنین محاسباتی را ممکن کند به طور مثال بسیاری بر روی گیت های Toffoli Gate (CCNOT) و Fredkin Gate (CSWAP) کار می کنند. گرچه این روش ها جالب هستند اما رسیدن به بالاترین سطح از معکوس پذیری به این ترتیب شاید دشوار بنماید. در عمل محاسباتی که در مغز یا هر سیستم زیست شناختی دیگری انجام می شود بر اساس گیت ها نیست. معکوس پذیری می تواند به داشتن «حافظه»‌از گذشته هم تعبیر شود. به عبارتی وقتی یک تابع معکوس پذیر تر است بیشتر می توان به گذشته ی آن نگاه کرد. در اینجا منظور از کم تر یا بیشتر معکوس پذیری باید به صورت خاص تری تعبیر شود. در یک دنباله ی محاسباتی هر قدر بیشتر بتوان مقادیری که در قدم های قبل تر انجام شده است به راحتی حدس زد نشان می دهند که سیستم «حافظه ی» بیشتری نسبت به گذشته ی خود دارد. این «حافظه» می تواند نه به صورت یک گیت معکوس پذیر بلکه ای حافظه ای باشد که در یک مجموعه از متغیر ها ثبت شده است. چیزی که به عنوان حافظه ی انجمنی associative memory می شناسیم. در اینجا وارد جزییات بیشتر نمی شویم اما خواننده را تشویق به فکر کردن در مورد چنین امکانی برای آینده ی هوش مصنوعی می کنیم!



tgoop.com/matlabtips/1668
Create:
Last Update:

🔵محاسبات معکوس پذیر:‌ آینده ی هوش مصنوعی؟🔵

بعضی وقتها که گوشی تان داغ میکند به این فکر میکنید که آیا در آینده گوشی ها یا کامپیوتر هایی می آیند که هیچوقت داغ نشوند؟ اصلا چرا یک وسیله ی محاسباتی باید داغ شود و گرما آزاد کند؟ امروزه یکی از چالش های عظیم هوش مصنوعی غلبه بر حجم محاسباتی بسیار عظیمی است که باعث آزاد شدن حجم زیادی از گرما می شود. در سال گذشته هوش مصنوعی بیشتر از کل کشور انگلستان انرژی مصرف کرده و در آموزش شبکه های عصبی از میزان عظیم کربن تولید شده در جو بحث می شود. به طور مثال آموزش مدل های زبانی عظیم GPT3 به اندازه ی ۱۰۰ کیلوگرم کربن به جو اضافه می کند! به این روند تازه آغاز شده است و در سالهای آینده به مشکل های بزرگتری منجر می شود. این از طرفی است که مغز انسان که می خواهیم آن را تقلید کنیم با تنها مصرف بیست وات کار میکند. اما قبل از پاسخ به این پرسش که منشا این همه تفاوت در کجاست باید سوال اساسی تری پرسید: اصلا چرا محاسبه باید گرما آزاد کند؟

اصل لانداوه )Landauer's principle) قانونی در ترمودینامیک است که هر عملیاتی غیر قابل معکوس که بر روی اطلاعات انجام می شود (مانند گیت های منطقی) منجر به آزاد کردن گرما می کند. میزان این گرما بزرگتر از k_B * T * Ln(2) است که در آن k_B ثابت بولتزمن و T دماست (در کلوین). دقت کنید که این میزان گرما بسیار بسیار پایین در حد ۲* ۱۰×-۲۱ ژول است. مقداری که گیت های امروزی فاصله ی زیادی با آن دارند (آن ها میلیاردها برابر بیشتر انرژی آزاد می کنند).

محاسبات معکوس ناپذیر شامل تمام مسیر های عملیاتی ای می شود که به صورت ادغام حداقل دو متغیر هستند. به طور مثال وقتی شما دو عدد را جمع می کنید نتیجه ی محاسبه عددی است که بر اساس آن نمی توان ورودی ها را تشخیص داد. اگر نتیجه ی عملیات جمع بین دو عدد صحیح ۴ باشد ورودی ها ممکن است ۱ و ۳ یا ۲ و ۲ یا ۳ و ۱ باشد (بدون در نظر گرفتن صفر). در پایه ای ترین سطح اصل لانداوه می گوید از دست رفتن اطلاعات (مثلا با یک محاسبه جمع یا پاک کردن حافظه) منجر به افزایش دما در محیط می شود چون اطلاعات از بین رفتنی نیست!

می توان چنین محاسباتی را در پایه ای ترین حالت خود یعنی به صورت گیت های منطقی بررسی کرد. به طور مثال تمامی گیت های منطقی به جز not معکوس ناپذیرند. از ریاضیات می دانیم تنها تابع هایی معکوس پذیر هستند که یک به یک باشند. وقتی این مسیر ها با هم ادغام (merge) می شوند این خاصیت از دست می رود. اما آیا می توان گیت ها رو طوری تغییر داد که محاسبه معکوس پذیر باشد. در نظریه این کار ممکن است. در رشته ی محاسبات معکوس پذیر تمرکز بر روی یافتن راه هایی است که چنین کاری را امکان پذیر می کند. به طور مثال می توان به جای خروجی دادن یه حالت برای عملگر xor آن را به صورت زیر داد:
(x, y) => (x, x xor y)
به این ترتیب می توان هر ورودی را بر اساس خروجی به درستی حدس زد! (خودتان امتحان کنید). دلیل این موضوع این است که این تابع یک به یک است. در سال ۱۹۶۳ Yves Lecerf ایده ی ماشین های تورینگ معکوس پذیر را مطرح کرد. با این حال او از اصل لانداوه بی خبر بود و به همین دلیل این ایده را دنبال نکرد. در سال ۱۹۷۳ چارلز بنت (Charles H. Bennett) که از پیشگامان محاسبات معکوس پذیر است نشان داد که ماشین تورینگ هم به صورت منطقی و هم به صورت ترمودینامیکی قابل معکوس کردن است!

بسیاری از پژوهشگران امروزه بر روی روش هایی کار میکنند که چنین محاسباتی را ممکن کند به طور مثال بسیاری بر روی گیت های Toffoli Gate (CCNOT) و Fredkin Gate (CSWAP) کار می کنند. گرچه این روش ها جالب هستند اما رسیدن به بالاترین سطح از معکوس پذیری به این ترتیب شاید دشوار بنماید. در عمل محاسباتی که در مغز یا هر سیستم زیست شناختی دیگری انجام می شود بر اساس گیت ها نیست. معکوس پذیری می تواند به داشتن «حافظه»‌از گذشته هم تعبیر شود. به عبارتی وقتی یک تابع معکوس پذیر تر است بیشتر می توان به گذشته ی آن نگاه کرد. در اینجا منظور از کم تر یا بیشتر معکوس پذیری باید به صورت خاص تری تعبیر شود. در یک دنباله ی محاسباتی هر قدر بیشتر بتوان مقادیری که در قدم های قبل تر انجام شده است به راحتی حدس زد نشان می دهند که سیستم «حافظه ی» بیشتری نسبت به گذشته ی خود دارد. این «حافظه» می تواند نه به صورت یک گیت معکوس پذیر بلکه ای حافظه ای باشد که در یک مجموعه از متغیر ها ثبت شده است. چیزی که به عنوان حافظه ی انجمنی associative memory می شناسیم. در اینجا وارد جزییات بیشتر نمی شویم اما خواننده را تشویق به فکر کردن در مورد چنین امکانی برای آینده ی هوش مصنوعی می کنیم!

BY MatlabTips


Share with your friend now:
tgoop.com/matlabtips/1668

View MORE
Open in Telegram


Telegram News

Date: |

It’s yet another bloodbath on Satoshi Street. As of press time, Bitcoin (BTC) and the broader cryptocurrency market have corrected another 10 percent amid a massive sell-off. Ethereum (EHT) is down a staggering 15 percent moving close to $1,000, down more than 42 percent on the weekly chart. The optimal dimension of the avatar on Telegram is 512px by 512px, and it’s recommended to use PNG format to deliver an unpixelated avatar. Done! Now you’re the proud owner of a Telegram channel. The next step is to set up and customize your channel. Telegram users themselves will be able to flag and report potentially false content. Click “Save” ;
from us


Telegram MatlabTips
FROM American