Forwarded from Machinelearning
🏆 NVIDIA Parakeet V2 возглавила рейтинг ASR-моделей на Hugging Face
Новая модель Parakeet-TDT-0.6B-V2 достигла рекордной точности распознавания речи — 6.05% Word Error Rate на Open ASR Leaderboard от Hugging Face.
🦜 Parakeet V2 выводит автоматическое распознавание речи (ASR) на новый уровень:
⚡ Молниеносный инференс — RTFx 3386 (в 50 раз быстрее аналогов)
🔍 Поддержка необычных сценариев:
• Распознавание песен в текст (song-to-lyrics)
• Форматирование чисел и временных меток
• Высокоточная транскрибация
📌 Лицензирование: CC-BY-4.0
🔗 Leaderboard: huggingface.co/spaces/hf-audio/open_asr_leaderboard
🔗 Демо: huggingface.co/nvidia/parakeet-tdt-0.6b-v2
🔗 Попробовать: build.nvidia.com/explore/speech
@ai_machinelearning_big_data
#NVIDIA #ASR #SpeechRecognition #Parakeet #AIaudio
Новая модель Parakeet-TDT-0.6B-V2 достигла рекордной точности распознавания речи — 6.05% Word Error Rate на Open ASR Leaderboard от Hugging Face.
🦜 Parakeet V2 выводит автоматическое распознавание речи (ASR) на новый уровень:
⚡ Молниеносный инференс — RTFx 3386 (в 50 раз быстрее аналогов)
🔍 Поддержка необычных сценариев:
• Распознавание песен в текст (song-to-lyrics)
• Форматирование чисел и временных меток
• Высокоточная транскрибация
🔗 Leaderboard: huggingface.co/spaces/hf-audio/open_asr_leaderboard
🔗 Демо: huggingface.co/nvidia/parakeet-tdt-0.6b-v2
🔗 Попробовать: build.nvidia.com/explore/speech
@ai_machinelearning_big_data
#NVIDIA #ASR #SpeechRecognition #Parakeet #AIaudio
Please open Telegram to view this post
VIEW IN TELEGRAM
📦 Kubernetes for ML Engineers — практическое руководство по продакшну ML-моделей
[Paulescu/kubernetes-for-ml-engineers](https://github.com/Paulescu/kubernetes-for-ml-engineers) — это открытое и очень доступное пошаговое руководство по использованию Kubernetes для машинного обучения. Проект помогает ML-инженерам перенести свои модели из Jupyter-блокнота в стабильное, масштабируемое продакшн-окружение.
🚀 Что внутри:
• Как собрать Docker-образ с моделью
• Как задеплоить его в кластер
• Примеры с REST API для инференса
• Конфигурация Pod'ов, Service'ов, Ingress
• Хостинг моделей с autoscaling
• Набор манифестов YAML — можно адаптировать под себя
🧠 Особенно полезно:
• ML-инженерам без опыта DevOps
• Для обучения Kubernetes через реальные ML-задачи
• Для продакшн-деплоя моделей с минимальными усилиями
📂 Всё по делу: чисто, практично и без лишней теории. Просто бери и запускай.
🔗 GitHub: github.com/Paulescu/kubernetes-for-ml-engineers
#kubernetes #mlops #machinelearning #devops #docker #opensource
[Paulescu/kubernetes-for-ml-engineers](https://github.com/Paulescu/kubernetes-for-ml-engineers) — это открытое и очень доступное пошаговое руководство по использованию Kubernetes для машинного обучения. Проект помогает ML-инженерам перенести свои модели из Jupyter-блокнота в стабильное, масштабируемое продакшн-окружение.
🚀 Что внутри:
• Как собрать Docker-образ с моделью
• Как задеплоить его в кластер
• Примеры с REST API для инференса
• Конфигурация Pod'ов, Service'ов, Ingress
• Хостинг моделей с autoscaling
• Набор манифестов YAML — можно адаптировать под себя
🧠 Особенно полезно:
• ML-инженерам без опыта DevOps
• Для обучения Kubernetes через реальные ML-задачи
• Для продакшн-деплоя моделей с минимальными усилиями
📂 Всё по делу: чисто, практично и без лишней теории. Просто бери и запускай.
🔗 GitHub: github.com/Paulescu/kubernetes-for-ml-engineers
#kubernetes #mlops #machinelearning #devops #docker #opensource
Gemma 3n теперь на десктопах! 🚀
🤗 Работает на Mac, Windows, Linux и устройствах Интернета вещей (IoT)
🔥 Модели на 2B и 4B параметров
🧠 Использует новую библиотеку LiteRT-LM
GitHub
🤗 Работает на Mac, Windows, Linux и устройствах Интернета вещей (IoT)
🔥 Модели на 2B и 4B параметров
🧠 Использует новую библиотеку LiteRT-LM
GitHub
Forwarded from Machinelearning
Please open Telegram to view this post
VIEW IN TELEGRAM
🎓 Хочешь разобраться в MCP (Model Context Protocol)? Вот с чего начать:
1️⃣ Курс от Hugging Face
Пошаговое введение в MCP и как он работает внутри LLM-экосистем
→ huggingface.co/learn/mcp-course
2️⃣ Курс от Microsoft
Практический гайд для новичков — с кодом, примерами и понятным объяснением
→ github.com/microsoft/mcp-for-beginners
3️⃣ Workshop
Онлайн-интенсив "MCP Fundamentals" — 25 июня, регистрация уже открыта
→ epicai.pro/events/workshop-mcp-fundamentals-2025-06-25
📦 MCP — это новый стандарт, который скоро будет везде: от агентов до LLM-интерфейсов. Самое время разобраться.
#MCP #AI #LLM #MachineLearning #Courses #DevTools
1️⃣ Курс от Hugging Face
Пошаговое введение в MCP и как он работает внутри LLM-экосистем
→ huggingface.co/learn/mcp-course
2️⃣ Курс от Microsoft
Практический гайд для новичков — с кодом, примерами и понятным объяснением
→ github.com/microsoft/mcp-for-beginners
3️⃣ Workshop
Онлайн-интенсив "MCP Fundamentals" — 25 июня, регистрация уже открыта
→ epicai.pro/events/workshop-mcp-fundamentals-2025-06-25
📦 MCP — это новый стандарт, который скоро будет везде: от агентов до LLM-интерфейсов. Самое время разобраться.
#MCP #AI #LLM #MachineLearning #Courses #DevTools
Forwarded from Machinelearning
SEAL - это методика от MiT, позволяющая LLM самостоятельно генерировать обучающие данные и настраивать параметры обучения, чтобы адаптироваться к новым задачам. Вместо традиционного файнтюна на внешних данных модель учится рефлексировать: анализировать контекст, создавать из него синтетические данные и применять их для корректировки собственных весов через механизм усиленного обучения.
SEAL, по сути, это два разделенных цикла:
Этот процесс повторяется, постепенно формируя у модели навык преобразования исходных данных в полезные обучающие сигналы.
SEAL протестили на 2 задачах: интеграции новых знаний и few-shot обучении. В первом случае модель генерирует логические следствия из текста, дообучается на них и улучшает точность ответов на вопросы без доступа к исходному тексту.
Во втором случае SEAL выбирает оптимальные аугментации данных и гиперпараметры для обучения на примерах задач ARC-AGI.
В обоих сценариях SEAL превзошел подходы с фиксированными шаблонами (ICL, TTT+Self Edit без RL и) и даже синтетическими данными от GPT-4.1.
Метод скорее академический и по большей части экспериментальный, у него есть ограничения:
@ai_machinelearning_big_data
#AI #ML #LLM #SEAL #RL #MiT
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
RoboBrain 2.0 — это open-source модель способная к широкому спектру задач: от восприятия окружения до управления роботами.
Её уже называют фундаментом для следующего поколения гуманоидов.
🔹 Поддерживает планирование, восприятие и действия в реальном мире
🔹 Заточен на легкую интеграцию в реальные проекты и роботиизированные системы
🔹 Полностью открытый код
Архитектура:
• Обрабатывает изображения, длинные видео и визуальные данные высокого разрешения
• Понимает сложные текстовые инструкции
• Входные данные:
— Визуальные — проходят через Vision Encoder + MLP Projector
— Текстовые — превращаются в унифицированный токен-поток
• Всё подаётся в LLM Decoder, который выполняет рассуждение, строит планы, определяет координаты и пространственные связи
С такими темпами более чем реально, что уже к 2027 году мы увидим массовое производство продвинутых гуманоидных роботов.
ИИ выходит в физический мир — и делает это уверено.
Запуск:
git clone https://github.com/FlagOpen/RoboBrain2.0.git
cd RoboBrain
# build conda env.
conda create -n robobrain2 python=3.10
conda activate robobrain2
pip install -r requirements.txt
▪Github: https://github.com/FlagOpen/RoboBrain2.0
▪Hugging face: https://huggingface.co/collections/BAAI/robobrain20-6841eeb1df55c207a4ea0036/
@ai_machinelearning_big_data
#ai #ml #robots #ComputerVision #BAAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥 Топ 30 Paper Recommendation Ильи Суцквера— это реально безумная подборка!
В списке — топовые статьи от G. Hinton, Karpathy, Chris Olah и других лидеров индустрии: NLP, компьютерное зрение, RNN, LSTM, основы deep learning и многое другое.
Если ты хочешь быстро войти в тему и понять фундаментальные идеи современного ИИ — тебе сюда!
https://aman.ai/primers/ai/top-30-papers/
В списке — топовые статьи от G. Hinton, Karpathy, Chris Olah и других лидеров индустрии: NLP, компьютерное зрение, RNN, LSTM, основы deep learning и многое другое.
Если ты хочешь быстро войти в тему и понять фундаментальные идеи современного ИИ — тебе сюда!
https://aman.ai/primers/ai/top-30-papers/
🔒 Concrete ML — инструмент для конфиденциального машинного обучения с открытым исходным кодом. Проект позволяет преобразовывать обычные ML-модели в их гомоморфные эквиваленты, сохраняя данные зашифрованными даже во время обработки.
Разработчики предлагают знакомый data scientist'ам интерфейс, похожий на scikit-learn, с возможностью работы через PyTorch и TensorFlow. Решение полностью автоматизирует гомоморфного шифрования (FHE) без необходимости глубоких знаний в криптографии.
🤖 GitHub
@machinelearning_ru
Разработчики предлагают знакомый data scientist'ам интерфейс, похожий на scikit-learn, с возможностью работы через PyTorch и TensorFlow. Решение полностью автоматизирует гомоморфного шифрования (FHE) без необходимости глубоких знаний в криптографии.
🤖 GitHub
@machinelearning_ru
Хотите войти в одну из самых востребованных и высокооплачиваемых IT-профессий, но кажется, что ML — это сложно и требует только высшего образования?
Приглашаем на бесплатный вебинар, где развеем мифы и покажем реальный путь с нуля до конкурентоспособного ML-инженера!
Спикер вебинара: Савелий Батурин, Senior ML-Engineer в Postgres Professional, а также преподаватель нашего курса-симулятора «Инженер машинного обучения».
На вебинаре вы узнаете:
Бонусы для участников: готовый роадмап обучения.
🕗 Встречаемся 17 июня в 18:30 по МСК
Please open Telegram to view this post
VIEW IN TELEGRAM
🧪 OneFlow — альтернативный фреймворк для глубокого обучения. Этот проект предлагает свежий взгляд на распределённые вычисления для нейросетей. Синтаксис напоминает PyTorch, но с особым подходом к параллельным вычислениям через концепцию Global Tensor.
Система изначально проектировалась для масштабирования — от локальной разработки до кластерных конфигураций. Фреймворк имеет встроенный компилятор графов для оптимизации моделей перед деплоем и поддержка n-мерного параллелизма. Для тестирования доступны ночные сборки с CUDA и CPU-версиями.
🤖 GitHub
@machinelearning_ru
Система изначально проектировалась для масштабирования — от локальной разработки до кластерных конфигураций. Фреймворк имеет встроенный компилятор графов для оптимизации моделей перед деплоем и поддержка n-мерного параллелизма. Для тестирования доступны ночные сборки с CUDA и CPU-версиями.
🤖 GitHub
@machinelearning_ru
🛡️ Исследование Columbia University: LLM-агенты можно взломать через Reddit
Учёные из Колумбийского университета показали, что ИИ-агентов на базе LLM можно обмануть, размещая вредоносные ссылки на популярных платформах вроде Reddit.
⚠️ Как это работает:
Злоумышленник публикует пост с темой, близкой к интересам агента (например, программирование или финансы), и вшивает в него вредоносные инструкции или ссылки.
Агент считает источник доверенным, заходит по ссылке — и может:
• раскрыть конфиденциальные данные
• отправить фишинговое письмо
• выполнить другую вредоносную задачу
🧪 В ходе тестов — 100% агентов попались на уловку.
📚 Подробнее — в выпуске *The Batch*:
👉 https://hubs.la/Q03rKxWl0
🤖 Вывод: даже «умные» LLM‑агенты остаются уязвимыми к простым атакам на доверие. Безопасность — это не опция, а необходимость.
@machinelearning_ru
Учёные из Колумбийского университета показали, что ИИ-агентов на базе LLM можно обмануть, размещая вредоносные ссылки на популярных платформах вроде Reddit.
⚠️ Как это работает:
Злоумышленник публикует пост с темой, близкой к интересам агента (например, программирование или финансы), и вшивает в него вредоносные инструкции или ссылки.
Агент считает источник доверенным, заходит по ссылке — и может:
• раскрыть конфиденциальные данные
• отправить фишинговое письмо
• выполнить другую вредоносную задачу
🧪 В ходе тестов — 100% агентов попались на уловку.
📚 Подробнее — в выпуске *The Batch*:
👉 https://hubs.la/Q03rKxWl0
🤖 Вывод: даже «умные» LLM‑агенты остаются уязвимыми к простым атакам на доверие. Безопасность — это не опция, а необходимость.
@machinelearning_ru