Telegram Web
🖥 openai-python — официальная библиотека Python для взаимодействия с API OpenAI!

🌟 Эта библиотека позволяет разработчикам интегрировать возможности OpenAI, такие как GPT, в приложения, предоставляя как синхронный, так и асинхронный интерфейсы.

💡 Библиотека поддерживает Python 3.8+ и включает типы для всех параметров запросов и ответов, упрощая разработку. Она предоставляет удобные методы для работы с генерацией текста, изображений, аудио и других функций, доступных через OpenAI API.

🔐 Лицензия: Apache-2.0

🖥 Github

@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥 Sourcegraph Cody — это открытый AI-ассистент для программирования, который помогает разработчикам быстрее писать, понимать и исправлять код!

🌟 Он интегрируется с популярными редакторами, такими как VS Code и JetBrains, предоставляя поддержку при разработке на основе локального и удалённого контекста кодовой базы. Cody использует современные языковые модели, включая GPT-4 и Claude 3.5, для предоставления рекомендаций, анализа API, поиска символов и шаблонов использования.

🌟 Cody позволяет использовать продвинутые функции поиска по кодовой базе, чтобы получать контекст и советы прямо в IDE. Он поддерживает гибкое масштабирование для работы с большими проектами, обеспечивая помощь в исправлении ошибок, создании новых функций и улучшении структуры кода.

🔐 Лицензия: Apache-2.0

🖥 Github

@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
✔️ Gemini теперь "помнит" историю чатов.

Google расширила возможности Gemini, внедрив функцию запоминания прошлых разговоров для подписчиков Gemini Advanced через Google One AI Premium. Это обновление позволяет Gemini предоставлять более релевантные ответы. Новая функция доступна на английском языке в веб-версии и мобильном приложении Gemini. Google планирует добавить поддержку других языков, а также для бизнес- и корпоративных клиентов Google Workspace в ближайшие недели.
blog.google

✔️ Увеличение частоты таймера ядра Linux повышает производительность ИИ.

Предложение инженера Google об увеличении частоты таймера ядра Linux с 250 до 1000 Гц вызвало интерес в технологическом сообществе и сервис Phoronix провел A/B-тестирование, чтобы оценить влияние этого изменения. Наиболее заметные улучшения наблюдались в ускорении LLM. В других задачах влияние было минимальным и находилось в пределах погрешности измерений системы. Основная идея Кайса Юсефа заключалась в том, что увеличение частоты таймера приведет к улучшению отзывчивости системы и позволит решить проблемы, связанные с 250 Гц: неточные временные интервалы и задержки в балансировке нагрузки.

Тестирование проводилось на AMD Ryzen 9 9950X, 32 ГБ ОЗУ и GPU Radeon RX 7900 XTX. Наибольший прирост производительности наблюдался с Llama, где увеличение частоты таймера привело к росту производительности на 10%.
tomshardware.com

✔️ Apple предложила парадигму претрейна и трансферного обучения для ускорения физического моделирования.

Apple Machine Learning Research опубликовало исследование метода трансферного обучения для графовых нейронных сетей, который значительно улучшает эффективность и точность физического моделирования сложных систем. В работе представлена масштабируемая графовая U-NET (SGUNET), способная адаптироваться к различным размерам сетки и разрешениям.
Предложенный метод позволяет использовать предварительно обученные модели на большом наборе данных (ABC Deformable - ABCD), содержащем 20 000 физических симуляций 3D-форм, для последующей тонкой настройки на целевых задачах с меньшим количеством данных. Это значительно снижает затраты на сбор и аннотацию данных.

Эксперименты на 2 датасетах (2D Deformable Plate и 3D Deforming Plate) показали, что модель, предварительно обученная на ABCD и дообученная на 1/16 части данных, демонстрирует улучшение RMSE на 11.05% по сравнению с моделью, обученной с нуля.
machinelearning.apple.com

✔️ GenAI снижает когнитивные усилия и вредит критическому мышлению.

Microsoft и Университет Карнеги опубликовали ресёрч о том, что генеративный ИИ оказывает двоякое влияние на когнитивные процессы человека. С одной стороны, ИИ-инструменты снижают воспринимаемую сложность задач, требующих критического мышления. С другой стороны, чрезмерная уверенность в возможностях ИИ приводит к снижению критического мышления и зависимости от сгенерированного контента.

Анализ опроса 319 представителей умственного труда показал, что работники чаще всего используют критическое мышление для обеспечения качества своей работы. При этом, чем выше уверенность работника в собственных навыках, тем больше усилий он прилагает для оценки результатов, предоставляемых ИИ. И наоборот, чем выше уверенность в возможностях ИИ, тем меньше усилий затрачивается на критическое мышление. Исследование также выявило изменения в структуре когнитивных усилий при использовании ИИ - они смещаются от сбора информации к ее проверке, от решения проблем к адаптации ответов ИИ и от выполнения задач к контролю за процессом.
microsoft.com

✔️ OpenAI советует упростить промпты для новых моделей рассуждений.

Новые рекомендации OpenAI указывают на то, что для эффективного использования моделей серии o, стоит отходить от сложных техник промпт-инжиниринга в пользу простых и прямых инструкций. OpenAI предостерегает от использования "boomer prompts" и инструкций вроде "думай шаг за шагом" для этих моделей. Вместо этого рекомендуется давать краткие, четко структурированные указания с использованием разделителей (XML-теги) и четко определять критерии успеха или ограничения.
platform.openai.com
Please open Telegram to view this post
VIEW IN TELEGRAM
✔️ Chonkie — это open-source инструмент для быстрого прототипирования и проведения экспериментов в области машинного обучения.

Чем полезен:
- Прототипирование и модульность:
Интуитивный API и модульная архитектура позволяют быстро настраивать модели, обрабатывать данные и менять гиперпараметры.

- Гибкость:
Возможность модификации исходного кода под конкретные задачи, а также интеграция с популярными фреймворками, такими как PyTorch или TensorFlow.

- Быстрая обратная связь:
Инструмент ускоряет процесс экспериментов, обеспечивая оперативное получение результатов обучения.

Установка:
pip install chonkie

Chonkie идеально подходит для исследователей и разработчиков, которым важна скорость экспериментов и гибкость настройки, но может быть ограничен для масштабных промышленных проектов.

Github
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Haskell
«Large Lambda Model» крутой гайд, где автор делится опытом реализации инференса модели GPT-2 на языке Haskell с использованием библиотеки hmatrix и OpenBLAS.

Основная цель проекта — выполнить прямой проход (forward pass) модели без обучения или обратного распространения ошибки.

Этот проект демонстрирует, как можно реализовать инференс модели GPT-2 на Haskell, углубляясь в детали архитектуры и работы с линейной алгеброй без использования специализированных тензорных библиотек.

Выбор инструментов:
Haskell и hmatrix: Использование Haskell с hmatrix для линейной алгебры.
OpenBLAS: Применение для оптимизации линейных операций.
Архитектура GPT-2:


Ресурсы для изучения:
- Репозитории Karpathy: NanoGPT и llm.c.
Визуализатор LLM от Brendan Bycroft.
Веб-приложение для токенизации: tiktokenizer.

Читать

@haskell_tg
Forwarded from Machinelearning
✔️ OpenAI только что опубликовала статью, в которой описан план создания лучшего в мире ИИ-кодера.
В статье исследуется применение обучения с подкреплением (RL) к большим языковым моделям (LLMs) улучшает их способность решать сложные задачи программирования и рассуждений. Авторы сравнивают три модели: общую модель o1, её специализированную версию o1-ioi (адаптированную для соревнований IOI) и более продвинутую модель o3.

Модель o1 значительно превосходит модели без цепочек рассуждений (например, gpt-4o) по показателям на платформе CodeForces.
Специализированная o1-ioi, оптимизированная для соревнований IOI, показывает хорошие результаты с ручными стратегиями, но её успех зависит от дополнительной настройки и тестовых стратегий.
Модель o3, обученная только с RL и без доменно-специфичных стратегий, демонстрирует ещё более высокую производительность, достигая результатов на уровне элитных программистов мира как на CodeForces, так и на IOI.
Применение в реальных задачах:
Масштабирование RL для общего использования, а не применение специализированных ручных стратегий, является эффективным путём достижения передового уровня ИИ в задачах рассуждения и программирования.
Статья

✔️ Google о квантовых вычислениях «Наш последний прорыв: мы смогли выполнить сложные вычисление за 5 минут, на что одному из самых быстрых суперкомпьютеров в мире потребовалось бы более 10 миллиардов лет — это дольше, чем существует наша Вселенная».
Тред

✔️ Илон Маск анонсировал выпуск новой версии Grok 3 от его стартапа xAI. Он заявил, что это будет «самый умный ИИ на земле»
Релиз состоится 18 февраля в 04:00 (GMT+3). Похоже, что Grok-3 выйдет с режимом рассуждений.

✔️ Вслед за «Последним экзаменом человечества» ScaleAI
выпустили новую очень сложную оценку рассуждений LLM:

EnigmaEval: 1184 мультимодальные головоломки, настолько сложные, что на их решение группам людей требуется от многих часов до нескольких дней.
Все топ-модели набрали 0% в Hard set и < 10% в Normal set
Scale

✔️ 4 SOTA модели компьютерного зрения
От оценки позы до обнаружения объектов в реальном времени - свежие, передовые инструменты компьютерного зрения на Hugging Face, которые очень просты в использовании.
- ViTPose для оценки позы
- RT-DETRv2 для обнаружения объектов в реальном времени
- DAB-DETR улучшает оригинальный DETR, решая проблемы медленного обучения
- DepthPro от Apple для оценки глубины на одном изображении, выдавая расстояния на уровне пикселей в метрах менее чем за секунду.

✔️ Computer use ootb
Свежий инструмент, который представляет собой готовое решение для создания десктопного GUI-агента. С его помощью можно отдавать команды и автоматизировать задачи на ПК (Windows и macOS) через веб-интерфейс, доступный с любого устройства с интернетом.
Github

@ai_machinelearning_big_data


#news #ai #ml #openai #grok #grok3 #Microsoft #ScaleAI #elonmusk #cv #sota #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥 Эта статья представляет новый метод контекстного разбиения (Contextual Partitioning) для крупных языковых моделей!

🌟 Этот подход динамически делит параметры модели на контекстно-осведомленные регионы, позволяя улучшить точность и эффективность за счет адаптации к входным данным. Авторы утверждают, что метод снижает избыточность, ускоряет обучение и улучшает согласованность с контекстом без необходимости внешней донастройки. Эксперименты показывают сокращение использования памяти и времени обучения.

🔗 Ссылка: *клик*

@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
⭐️ Новый Grok‑3 от xAI уже доступен для премиум-пользователей.

Вот главное:
- Вышло два варианта модели: Grok‑3 mini и полноразмерный Grok‑3.

- Беспрецедентные достижения: Первая модель, преодолевшая 1400 очков, и лидирует по всем категориям на арене.

- Режим рассуждений: Хотя базовая модель не «ризонинг», можно активировать режим рассуждений с двумя настройками – «Thinking» и «Thinking Hard». Процесс рассуждения почти полностью прозрачен.

- Выдающаяся производительность: На тестах Math24 hard Grok‑3 показывает результаты лучше, чем R1, o1 и даже o3‑mini high. AIME 24 — 52% [96% с обоснованием!]
GPQA —75% [85%]
Кодинг (LiveCodeBench) — 57% [80%].

- На бенчмарках версия mini сравнима с DeepSeek 3, GPT‑4o и Gemini Pro.

- Новый агент Deep (Re)search: Встроенный инструмент для быстрого интернет-поиска, кросс-валидации источников и корректировки плана, который на демонстрации справился всего за минуту.

https://x.com/i/grok

@ai_machinelearning_big_data


#grok #elonmusk #ai #ml #llm #reasoning #xAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥 Reflex LLM Examples — это репозиторий, демонстрирующий практические примеры использования больших языковых моделей от таких провайдеров, как Google, Anthropic, OpenAI, а также open-source моделей для локального хостинга!

🌟 Эти примеры построены с использованием фреймворка Reflex, который позволяет разработчикам создавать полнофункциональные веб-приложения исключительно на языке Python, без необходимости в знаниях JavaScript или веб-разработки.

🖥 Github

@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
Вот для чего Маску на самом деле нужен Grok3.

@machinelearning_ru
⭐️ R1 1776 — это дообученная версия модели DeepSeek‑R1 от Perplexity AI, созданная для устранения цензуры КПК.

Модель обеспечивает объективную, точную и фактологически достоверную информацию, сохраняя высокие аналитические и математические способности. Для проверки «несанированности» её ответов используется многоязычный набор тестовых примеров, охватывающий свыше 1000 чувствительных тем.

https://huggingface.co/perplexity-ai/r1-1776

@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
📚 В этой статье обсуждается ограниченность современных методов машинного обучения в отношении неопределенности Найта — типов неопределенности, которые невозможно количественно оценить!

🌟 Авторы утверждают, что существующие формализмы ML, такие как обучение с подкреплением, не учитывают неизвестные и непредсказуемые изменения в открытом мире, что снижает их устойчивость к неожиданным ситуациям. В отличие от этого, биологическая эволюция успешно справляется с такими неопределенностями, создавая организмы, способные адаптироваться к новым и непредсказуемым условиям.

🔗 Ссылка: *клик*

@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
2025/06/25 17:44:52
Back to Top
HTML Embed Code: