MACHINELEARNING_RU Telegram 2634
Forwarded from ML Underhood
Крутые постеры с конференции ICLR 2025

Наши инженеры вовсю изучают постеры на мероприятии и делятся самыми любопытными статьями.

TempMe: Video Temporal Token Merging for Efficient Text-Video Retrieval

Авторы предлагают хитро дообучить Clip для ускорения поиска по видео. Результаты:

— в 1,5-3 раза снижается количество вычислений для инференса, в зависимости от базового метода;
— качество ранжирования в сером плюсе

Приёмы:

— Используется LoRA для дообучения энкодера.
— Применяется специальная процедура усреднения похожих токенов, как по временной, так и по пространственной размерностям.
— Для улучшения такого усреднения используются дополнительные позишн-эмбеды.
— За счёт этого снижается количество обрабатываемых токенов и возникают более явные зависимости между кадрами по времени.

LeanVec: Searching vectors faster by making them fit

Авторы предлагают решение для ускорения процедуры поиска. Идея очень понятная и, возможно, много где реализована.

Собираем выборку запрос-документ, вычисляем матрицы A и B, преобразующие данные в меньшую размерность.
2. На этапе построения базы вычисляем Bx — получаем базу документов меньшей размерности и строим ANN (quant).
В процессе поиска делаем Aq, на основе которой из графа ищем ближайшие документы, а после уточняем кандидатов на этапе реранкинга по оригинальным векторам.

В статье приводят результаты экспериментов показывающие, что меньшая размерность может быть в 3-4 раза меньше исходной без значимой потери качества поиска. Плюс, полученное преобразование устойчиво к OOD.

Странно, что авторы не сравнили своё решение с подходом, использующимся при обучении многих SOTA-эмбеддингов: Matryoshka Representation Learning. В таком случае в модель уже встроены низкие размерности и не нужно ничего дополнительно обучать. По словам авторов, SOTA-библиотека от Intel, в которую они встроились, всё еще имеет всего 150 звезд на Github, так что теоретически идеи хорошие, а вот использовать ли их на практике — об этом стоит 10 раз подумать и самому оценить.

DeLLMa: Decision Making Under Uncertainty with Large Language Models

Авторы учат LLM принимать решения в условиях неопределённости. Они предлагают ввести лист состояний мира, который можно вывести из контекста и к которому, попарно для каждого state-action выводится функция полезности.

Постеры заметили Кирилл Никоров, Алексей Спасёнов, Александр Воронцов

#YaICLR

ML Underhood
Please open Telegram to view this post
VIEW IN TELEGRAM



tgoop.com/machinelearning_ru/2634
Create:
Last Update:

Крутые постеры с конференции ICLR 2025

Наши инженеры вовсю изучают постеры на мероприятии и делятся самыми любопытными статьями.

TempMe: Video Temporal Token Merging for Efficient Text-Video Retrieval

Авторы предлагают хитро дообучить Clip для ускорения поиска по видео. Результаты:

— в 1,5-3 раза снижается количество вычислений для инференса, в зависимости от базового метода;
— качество ранжирования в сером плюсе

Приёмы:

— Используется LoRA для дообучения энкодера.
— Применяется специальная процедура усреднения похожих токенов, как по временной, так и по пространственной размерностям.
— Для улучшения такого усреднения используются дополнительные позишн-эмбеды.
— За счёт этого снижается количество обрабатываемых токенов и возникают более явные зависимости между кадрами по времени.

LeanVec: Searching vectors faster by making them fit

Авторы предлагают решение для ускорения процедуры поиска. Идея очень понятная и, возможно, много где реализована.

Собираем выборку запрос-документ, вычисляем матрицы A и B, преобразующие данные в меньшую размерность.
2. На этапе построения базы вычисляем Bx — получаем базу документов меньшей размерности и строим ANN (quant).
В процессе поиска делаем Aq, на основе которой из графа ищем ближайшие документы, а после уточняем кандидатов на этапе реранкинга по оригинальным векторам.

В статье приводят результаты экспериментов показывающие, что меньшая размерность может быть в 3-4 раза меньше исходной без значимой потери качества поиска. Плюс, полученное преобразование устойчиво к OOD.

Странно, что авторы не сравнили своё решение с подходом, использующимся при обучении многих SOTA-эмбеддингов: Matryoshka Representation Learning. В таком случае в модель уже встроены низкие размерности и не нужно ничего дополнительно обучать. По словам авторов, SOTA-библиотека от Intel, в которую они встроились, всё еще имеет всего 150 звезд на Github, так что теоретически идеи хорошие, а вот использовать ли их на практике — об этом стоит 10 раз подумать и самому оценить.

DeLLMa: Decision Making Under Uncertainty with Large Language Models

Авторы учат LLM принимать решения в условиях неопределённости. Они предлагают ввести лист состояний мира, который можно вывести из контекста и к которому, попарно для каждого state-action выводится функция полезности.

Постеры заметили Кирилл Никоров, Алексей Спасёнов, Александр Воронцов

#YaICLR

ML Underhood

BY Машинное обучение RU






Share with your friend now:
tgoop.com/machinelearning_ru/2634

View MORE
Open in Telegram


Telegram News

Date: |

While some crypto traders move toward screaming as a coping mechanism, many mental health experts have argued that “scream therapy” is pseudoscience. Scientific research or no, it obviously feels good. 3How to create a Telegram channel? Earlier, crypto enthusiasts had created a self-described “meme app” dubbed “gm” app wherein users would greet each other with “gm” or “good morning” messages. However, in September 2021, the gm app was down after a hacker reportedly gained access to the user data. In the “Bear Market Screaming Therapy Group” on Telegram, members are only allowed to post voice notes of themselves screaming. Anything else will result in an instant ban from the group, which currently has about 75 members. So far, more than a dozen different members have contributed to the group, posting voice notes of themselves screaming, yelling, groaning, and wailing in various pitches and rhythms.
from us


Telegram Машинное обучение RU
FROM American