MACHINELEARNING_RU Telegram 2364
Forwarded from Machinelearning
🥥 Training Large Language Models to Reason in a Continuous Latent Space

Только что был выпущен код для нового подхода в обучении LLM ризонингу - "Coconut"(Chain of Continuous Thought).

Coconut позволяет LLM рассуждать более эффективно и результативно, особенно при комплексных задачах планирования.

Основная идея алгоритма - это улучшения рассуждений моделей с использованием латентного пространства, вместо выходных лексем

При таком подходе - цепочка мыслей генерирует не в виде текстовых токенов, а в виде эмбеддингов, а затем циклично подаются обратно в LLM.

В «Coconut» у LLM есть два режима. Языковой режим работает как обычная языковая модель, генерируя текст и латентный режим, который использует скрытые состояния в качестве следующего входного сигнала, обозначенного специальными токенами <bot> и <eot>.

Скрытые состояния Coconut работают как дерево поиска, а не как линейная цепочка рассуждений, что позволяет модели исследовать несколько потенциальных путей одновременно.

На каждом шаге модель отдает приоритет перспективным узлам, отсекая менее релевантные.

Это помогает эффективнее справляться с задачами планирования и логики, по сравнению с традиционным методом работы CoT.

Как это работает:
1️⃣ Сначала модели подается промпт, за которым следует специальный токен <bot>, чтобы инициировать скрытое рассуждение.
2️⃣ Последнее скрытое состояние LLM после обработки <bot> используется в качестве первой "непрерывной мысли"
3️⃣ Непрерывная мысль подается обратно в модель как новый вход, генерируя новое скрытое состояние (новую мысль). Это повторяется в течение K итераций → цепочка непрерывных мыслей.
4️⃣ Далее добавляется маркер <eot> после последней непрерывной мысли, чтобы завершить скрытое рассуждение.
5️⃣ Последняя непрерывная мысль и <eot> затем используются для генерации ответа.
Такой подход, разумеется, требует большого количества ресурсов при обучении модели.

Плюсы такого подхода:
🏅 Превосходит CoT в задачах, где требуется планирования и сложные рассуждения, таких как ProntoQA и ProsQA
📉 Генерирует значительно меньше лексем во время размышлений по сравнению с CoT
🔀 Может выполнять поиск с широким охватом (BFS), кодируя одновременно несколько альтернативных следующих шагов

git clone [email protected]:facebookresearch/coconut.git
cd coconut


Github
Paper

@ai_machinelearning_big_data


#deeplearning #nlp #reasoning #llm #ml



tgoop.com/machinelearning_ru/2364
Create:
Last Update:

🥥 Training Large Language Models to Reason in a Continuous Latent Space

Только что был выпущен код для нового подхода в обучении LLM ризонингу - "Coconut"(Chain of Continuous Thought).

Coconut позволяет LLM рассуждать более эффективно и результативно, особенно при комплексных задачах планирования.

Основная идея алгоритма - это улучшения рассуждений моделей с использованием латентного пространства, вместо выходных лексем

При таком подходе - цепочка мыслей генерирует не в виде текстовых токенов, а в виде эмбеддингов, а затем циклично подаются обратно в LLM.

В «Coconut» у LLM есть два режима. Языковой режим работает как обычная языковая модель, генерируя текст и латентный режим, который использует скрытые состояния в качестве следующего входного сигнала, обозначенного специальными токенами <bot> и <eot>.

Скрытые состояния Coconut работают как дерево поиска, а не как линейная цепочка рассуждений, что позволяет модели исследовать несколько потенциальных путей одновременно.

На каждом шаге модель отдает приоритет перспективным узлам, отсекая менее релевантные.

Это помогает эффективнее справляться с задачами планирования и логики, по сравнению с традиционным методом работы CoT.

Как это работает:
1️⃣ Сначала модели подается промпт, за которым следует специальный токен <bot>, чтобы инициировать скрытое рассуждение.
2️⃣ Последнее скрытое состояние LLM после обработки <bot> используется в качестве первой "непрерывной мысли"
3️⃣ Непрерывная мысль подается обратно в модель как новый вход, генерируя новое скрытое состояние (новую мысль). Это повторяется в течение K итераций → цепочка непрерывных мыслей.
4️⃣ Далее добавляется маркер <eot> после последней непрерывной мысли, чтобы завершить скрытое рассуждение.
5️⃣ Последняя непрерывная мысль и <eot> затем используются для генерации ответа.
Такой подход, разумеется, требует большого количества ресурсов при обучении модели.

Плюсы такого подхода:
🏅 Превосходит CoT в задачах, где требуется планирования и сложные рассуждения, таких как ProntoQA и ProsQA
📉 Генерирует значительно меньше лексем во время размышлений по сравнению с CoT
🔀 Может выполнять поиск с широким охватом (BFS), кодируя одновременно несколько альтернативных следующих шагов

git clone [email protected]:facebookresearch/coconut.git
cd coconut


Github
Paper

@ai_machinelearning_big_data


#deeplearning #nlp #reasoning #llm #ml

BY Машинное обучение RU









Share with your friend now:
tgoop.com/machinelearning_ru/2364

View MORE
Open in Telegram


Telegram News

Date: |

Find your optimal posting schedule and stick to it. The peak posting times include 8 am, 6 pm, and 8 pm on social media. Try to publish serious stuff in the morning and leave less demanding content later in the day. Users are more open to new information on workdays rather than weekends. Judge Hui described Ng as inciting others to “commit a massacre” with three posts teaching people to make “toxic chlorine gas bombs,” target police stations, police quarters and the city’s metro stations. This offence was “rather serious,” the court said. How to create a business channel on Telegram? (Tutorial) Informative
from us


Telegram Машинное обучение RU
FROM American