MACHINELEARNING_RU Telegram 2293
Forwarded from Machinelearning
🌟 Bamba-9B: эффективная Hybrid Mamba2 модель.

Bamba-9B - модель, разработанная IBM, Princeton, CMU и UIUC на основе полностью открытых данных. Модель демонстрирует улучшение пропускной способности в 2.5 раза и снижение задержки инференса в 2 раза по сравнению с Transformers в vLLM. Bamba-9B доступна для использования в HF Transformers, vLLM, TRL и llama.cpp.

Bamba-9B использует уникальный распределенный, не сохраняющий состояние data loader, обеспечивающий бесшовное возобновление работы, автоматическое масштабирование, потоковую передачу данных с zero-overhead for shuffling.

Модель основана на архитектуре NVIDIA hybrid Mamba2, но с некоторыми изменениями. Bamba-9B имеет 32 слоя, из которых 3 полноценных слоя внимания и 29 слоев Mamba2, в то время как NVIDIA hybrid Mamba2 имеет 29 слоев, из которых 4 слоя внимания и 25 слоев Mamba2.

Bamba-9B была обучена на 2.2T токенов с датасетом Dolma v1.7 на первом этапе и FineWeb-edu и Cosmopedia на втором.

По проведенным замерам, средняя производительность Bamba-9B почти сравнима с Llama 3.1 8B (45.53 против 44.68), при том что Llama 3.1 8B была обучена на 7x большем объеме данных.

Bamba-9B превзошла Olmo 7B, обученную на идентичном количестве токенов и наборах данных. В сравнении с другими моделями на базе Mamba/Mamba2, Bamba-9B показывает хорошие результаты, при этом обеспечивая значительное улучшение (до 5x) эффективности логического вывода.

▶️ Планы разработчиков на дальнейшее развитие Bamba:

🟠увеличение длины контекста модели Bamba-9B (сейчас - 4096);
🟠улучшение модели путем обучения на дополнительных данных и точной настройки на наборах данных SFT.

▶️ Опубликованный набор моделей:

🟢Bamba 9B - финальная версия модели после 2-х этапов обучения
🟢Bamba 9B 2T - чекпоинт после 1 этапа трейна с датасетом Dolma v1.7
🟠Bamba 9B 1.8T - промежуточный чекпоинт 1 этапа обучения

🟢Bamba 9B FP8 - квантованная с помощью llm-compressor версия Bamba 9B
🟢Bamba 9B 2T FP8 - квантованная с помощью llm-compressor версия Bamba 9B 2Т
🟠Bamba 9B 1.8T FP8 - квантованная с помощью llm-compressor версия Bamba 9B 1.8Т

▶️Пример инференса на Transformers с Bamba-9B:

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("ibm-fms/Bamba-9B")
tokenizer = AutoTokenizer.from_pretrained("ibm-fms/Bamba-9B")

message = ["Mamba is a snake with following properties "]
inputs = tokenizer(message, return_tensors='pt', return_token_type_ids=False)
response = model.generate(**inputs, max_new_tokens=64)
print(tokenizer.batch_decode(response, skip_special_tokens=True)[0])


📌Лицензирование: Apache 2.0 License.


🟡Статья
🟡Набор моделей
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #Bamba #IBM
Please open Telegram to view this post
VIEW IN TELEGRAM
5🔥2👍1



tgoop.com/machinelearning_ru/2293
Create:
Last Update:

🌟 Bamba-9B: эффективная Hybrid Mamba2 модель.

Bamba-9B - модель, разработанная IBM, Princeton, CMU и UIUC на основе полностью открытых данных. Модель демонстрирует улучшение пропускной способности в 2.5 раза и снижение задержки инференса в 2 раза по сравнению с Transformers в vLLM. Bamba-9B доступна для использования в HF Transformers, vLLM, TRL и llama.cpp.

Bamba-9B использует уникальный распределенный, не сохраняющий состояние data loader, обеспечивающий бесшовное возобновление работы, автоматическое масштабирование, потоковую передачу данных с zero-overhead for shuffling.

Модель основана на архитектуре NVIDIA hybrid Mamba2, но с некоторыми изменениями. Bamba-9B имеет 32 слоя, из которых 3 полноценных слоя внимания и 29 слоев Mamba2, в то время как NVIDIA hybrid Mamba2 имеет 29 слоев, из которых 4 слоя внимания и 25 слоев Mamba2.

Bamba-9B была обучена на 2.2T токенов с датасетом Dolma v1.7 на первом этапе и FineWeb-edu и Cosmopedia на втором.

По проведенным замерам, средняя производительность Bamba-9B почти сравнима с Llama 3.1 8B (45.53 против 44.68), при том что Llama 3.1 8B была обучена на 7x большем объеме данных.

Bamba-9B превзошла Olmo 7B, обученную на идентичном количестве токенов и наборах данных. В сравнении с другими моделями на базе Mamba/Mamba2, Bamba-9B показывает хорошие результаты, при этом обеспечивая значительное улучшение (до 5x) эффективности логического вывода.

▶️ Планы разработчиков на дальнейшее развитие Bamba:

🟠увеличение длины контекста модели Bamba-9B (сейчас - 4096);
🟠улучшение модели путем обучения на дополнительных данных и точной настройки на наборах данных SFT.

▶️ Опубликованный набор моделей:

🟢Bamba 9B - финальная версия модели после 2-х этапов обучения
🟢Bamba 9B 2T - чекпоинт после 1 этапа трейна с датасетом Dolma v1.7
🟠Bamba 9B 1.8T - промежуточный чекпоинт 1 этапа обучения

🟢Bamba 9B FP8 - квантованная с помощью llm-compressor версия Bamba 9B
🟢Bamba 9B 2T FP8 - квантованная с помощью llm-compressor версия Bamba 9B 2Т
🟠Bamba 9B 1.8T FP8 - квантованная с помощью llm-compressor версия Bamba 9B 1.8Т

▶️Пример инференса на Transformers с Bamba-9B:

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("ibm-fms/Bamba-9B")
tokenizer = AutoTokenizer.from_pretrained("ibm-fms/Bamba-9B")

message = ["Mamba is a snake with following properties "]
inputs = tokenizer(message, return_tensors='pt', return_token_type_ids=False)
response = model.generate(**inputs, max_new_tokens=64)
print(tokenizer.batch_decode(response, skip_special_tokens=True)[0])


📌Лицензирование: Apache 2.0 License.


🟡Статья
🟡Набор моделей
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #Bamba #IBM

BY Машинное обучение RU








Share with your friend now:
tgoop.com/machinelearning_ru/2293

View MORE
Open in Telegram


Telegram News

Date: |

Step-by-step tutorial on desktop: Channel login must contain 5-32 characters 2How to set up a Telegram channel? (A step-by-step tutorial) bank east asia october 20 kowloon Developing social channels based on exchanging a single message isn’t exactly new, of course. Back in 2014, the “Yo” app was launched with the sole purpose of enabling users to send each other the greeting “Yo.”
from us


Telegram Машинное обучение RU
FROM American