Alibaba только что выпустила Marco-o1
Marco-o1 основан на тонкой настройке цепочки (CoT), поиске по дереву Монте-Карло (MCTS), механизмах рефлексии и инновационных стратегиях рассуждения, оптимизированных для решения сложных задач в реальном мире.
Благодаря файнтюнингу Qwen2-7B-Instruct с использованием комбинации отфильтрованного набора данных Open-O1 CoT, набора данных Marco-o1 CoT и набора данных инструкций Marco-o1, Marco-o1 улучшил обработку сложных задач.
MCTS позволяет исследовать множество путей рассуждения, используя показатели достоверности, полученные на основе логарифмических вероятностей, применяемых softmax для топ-k альтернативных токенов, что приводит модель к оптимальным решениям.
Более того, такая стратегия обоснованных действий предполагает изменение степени детализации действий в рамках шагов и мини-шагов для оптимизации эффективности и точности поиска.
▪HF: https://huggingface.co/AIDC-AI/Marco-o1
▪Github: https://github.com/AIDC-AI/Marco-o1
▪Paper: https://arxiv.org/abs/2411.14405
▪Data: https://github.com/AIDC-AI/Marco-o1/tree/main/data
@machinelearning_ru
Marco-o1 основан на тонкой настройке цепочки (CoT), поиске по дереву Монте-Карло (MCTS), механизмах рефлексии и инновационных стратегиях рассуждения, оптимизированных для решения сложных задач в реальном мире.
Благодаря файнтюнингу Qwen2-7B-Instruct с использованием комбинации отфильтрованного набора данных Open-O1 CoT, набора данных Marco-o1 CoT и набора данных инструкций Marco-o1, Marco-o1 улучшил обработку сложных задач.
MCTS позволяет исследовать множество путей рассуждения, используя показатели достоверности, полученные на основе логарифмических вероятностей, применяемых softmax для топ-k альтернативных токенов, что приводит модель к оптимальным решениям.
Более того, такая стратегия обоснованных действий предполагает изменение степени детализации действий в рамках шагов и мини-шагов для оптимизации эффективности и точности поиска.
▪HF: https://huggingface.co/AIDC-AI/Marco-o1
▪Github: https://github.com/AIDC-AI/Marco-o1
▪Paper: https://arxiv.org/abs/2411.14405
▪Data: https://github.com/AIDC-AI/Marco-o1/tree/main/data
@machinelearning_ru
❤5👍2🤬2🔥1
tgoop.com/machinelearning_ru/2190
Create:
Last Update:
Last Update:
Alibaba только что выпустила Marco-o1
Marco-o1 основан на тонкой настройке цепочки (CoT), поиске по дереву Монте-Карло (MCTS), механизмах рефлексии и инновационных стратегиях рассуждения, оптимизированных для решения сложных задач в реальном мире.
Благодаря файнтюнингу Qwen2-7B-Instruct с использованием комбинации отфильтрованного набора данных Open-O1 CoT, набора данных Marco-o1 CoT и набора данных инструкций Marco-o1, Marco-o1 улучшил обработку сложных задач.
MCTS позволяет исследовать множество путей рассуждения, используя показатели достоверности, полученные на основе логарифмических вероятностей, применяемых softmax для топ-k альтернативных токенов, что приводит модель к оптимальным решениям.
Более того, такая стратегия обоснованных действий предполагает изменение степени детализации действий в рамках шагов и мини-шагов для оптимизации эффективности и точности поиска.
▪HF: https://huggingface.co/AIDC-AI/Marco-o1
▪Github: https://github.com/AIDC-AI/Marco-o1
▪Paper: https://arxiv.org/abs/2411.14405
▪Data: https://github.com/AIDC-AI/Marco-o1/tree/main/data
@machinelearning_ru
Marco-o1 основан на тонкой настройке цепочки (CoT), поиске по дереву Монте-Карло (MCTS), механизмах рефлексии и инновационных стратегиях рассуждения, оптимизированных для решения сложных задач в реальном мире.
Благодаря файнтюнингу Qwen2-7B-Instruct с использованием комбинации отфильтрованного набора данных Open-O1 CoT, набора данных Marco-o1 CoT и набора данных инструкций Marco-o1, Marco-o1 улучшил обработку сложных задач.
MCTS позволяет исследовать множество путей рассуждения, используя показатели достоверности, полученные на основе логарифмических вероятностей, применяемых softmax для топ-k альтернативных токенов, что приводит модель к оптимальным решениям.
Более того, такая стратегия обоснованных действий предполагает изменение степени детализации действий в рамках шагов и мини-шагов для оптимизации эффективности и точности поиска.
▪HF: https://huggingface.co/AIDC-AI/Marco-o1
▪Github: https://github.com/AIDC-AI/Marco-o1
▪Paper: https://arxiv.org/abs/2411.14405
▪Data: https://github.com/AIDC-AI/Marco-o1/tree/main/data
@machinelearning_ru
BY Машинное обучение RU





Share with your friend now:
tgoop.com/machinelearning_ru/2190