MACHINELEARNING_INTERVIEW Telegram 2153
⚡️ REFRAG: новое поколение RAG

REFRAG ускоряет работу Retrieval-Augmented Generation, сжимая контекст в chunk embeddings, сохраняя качество ответов.

📌 Результаты:

- До 30.85× быстрее первый токен

- До 16× длиннее эффективный контекст без потери точности

🔍 В чём идея:

Обычные RAG-промпты вставляют кучу текстов, половина из которых не нужна → модель тратит вычисления впустую.

REFRAG заменяет токены этих текстов кэшированными эмбеддингами, подгоняет их под размер декодера и подаёт вместе с вопросом.

Последовательность короче → внимание масштабируется по чанкам, а не по токенам → меньше памяти уходит на KV-кэш.

🎯 Как работает:

- Большинство чанков остаются сжатыми.

- Специальная политика выбирает, какие именно разжать обратно в токены, если важна точная формулировка.

- Обучение идёт в 2 шага: сначала модель учится восстанавливать токены из эмбеддингов, потом продолжается предобучение с задачей прогнозирования следующего абзаца (постепенно увеличивая размер чанков).

- Политика сжатия/разжатия тренируется через reinforcement learning, используя лосс предсказания слова как сигнал.

📄 Paper: arxiv.org/abs/2509.01092
14👍9🔥6



tgoop.com/machinelearning_interview/2153
Create:
Last Update:

⚡️ REFRAG: новое поколение RAG

REFRAG ускоряет работу Retrieval-Augmented Generation, сжимая контекст в chunk embeddings, сохраняя качество ответов.

📌 Результаты:

- До 30.85× быстрее первый токен

- До 16× длиннее эффективный контекст без потери точности

🔍 В чём идея:

Обычные RAG-промпты вставляют кучу текстов, половина из которых не нужна → модель тратит вычисления впустую.

REFRAG заменяет токены этих текстов кэшированными эмбеддингами, подгоняет их под размер декодера и подаёт вместе с вопросом.

Последовательность короче → внимание масштабируется по чанкам, а не по токенам → меньше памяти уходит на KV-кэш.

🎯 Как работает:

- Большинство чанков остаются сжатыми.

- Специальная политика выбирает, какие именно разжать обратно в токены, если важна точная формулировка.

- Обучение идёт в 2 шага: сначала модель учится восстанавливать токены из эмбеддингов, потом продолжается предобучение с задачей прогнозирования следующего абзаца (постепенно увеличивая размер чанков).

- Политика сжатия/разжатия тренируется через reinforcement learning, используя лосс предсказания слова как сигнал.

📄 Paper: arxiv.org/abs/2509.01092

BY Machine learning Interview







Share with your friend now:
tgoop.com/machinelearning_interview/2153

View MORE
Open in Telegram


Telegram News

Date: |

2How to set up a Telegram channel? (A step-by-step tutorial) Telegram offers a powerful toolset that allows businesses to create and manage channels, groups, and bots to broadcast messages, engage in conversations, and offer reliable customer support via bots. Commenting about the court's concerns about the spread of false information related to the elections, Minister Fachin noted Brazil is "facing circumstances that could put Brazil's democracy at risk." During the meeting, the information technology secretary at the TSE, Julio Valente, put forward a list of requests the court believes will disinformation. How to Create a Private or Public Channel on Telegram? Administrators
from us


Telegram Machine learning Interview
FROM American