MACHINELEARNING_INTERVIEW Telegram 1923
Forwarded from Machinelearning
📌SemDiD: Семантическое разнообразие ответов для LLM.

Исследователи из из Гонконгского университета и инженеры Alibaba научили LLM генерировать семантически разные ответы, заставляя их «думать» в ортогональных направлениях.

Наверняка каждый, кто работает с LLM, сталкивался с их любовью к самоповторам. Запрашиваешь несколько вариантов решения, а получаешь одну и ту же мысль, просто перефразированную.

Стандартные подходы к декодированию, temperature sampling или diverse beam search, создают лишь лексическое разнообразие, но пасуют, когда требуется семантическое. Это серьезная проблема для Best-of-N или RLHF. Ведь без по-настоящему разных идей и подходов к решению задачи эти методы теряют свою силу: выбирать лучший вариант не из чего, а обучать модель на однотипных примерах неэффективно.

Решение предложили в методе SemDiD (Semantic-guided Diverse Decoding). Его суть, если кратко, перестать играть с токенами на поверхности и начать управлять генерацией напрямую в пространстве эмбеддингов.

🟡Метод работает так.

Сначала, на старте, он принудительно направляет разные группы beams по ортогональным векторам в семантическом пространстве. Грубо говоря, это как дать команду разным поисковым группам двигаться строго на север, юг и запад, чтобы они гарантированно разошлись.

По мере генерации, когда жесткие директивы могут стать неоптимальными, включается второй механизм - inter-group repulsion. Он просто следит, чтобы смысловые траектории ответов не сближались, сохраняя их уникальность до самого конца.

Но как, гоняясь за разнообразием, не получить на выходе бессвязный бред?

SemDiD подходит к контролю качества уникально. Он не пытается слепо максимизировать вероятность последовательности, а использует ее лишь как нижнюю границу, чтобы отсечь совсем уж плохие варианты.

Кроме того, алгоритм корректирует системные искажения, когда вероятность токенов искусственно завышается в зависимости от их позиции в тексте.

Для баланса между качеством и разнообразием используется адаптивный механизм на основе гармонического среднего, который в каждый момент времени уделяет больше внимания той метрике, которая проседает.

🟡В тестах метод показал неплохие результаты.

На бенчмарках для Best-of-N, от MMLU-Pro+ до GSM8K, SemDiD увеличивает покрытие (шанс найти верный ответ) на 1.4%-5.2% по сравнению с аналогами.

🟡Но главный прорыв - в RLHF.

Генерируя для GRPO или RLOO семантически богатые наборы ответов, SemDiD предоставляет им более качественный материал для обучения. Это ускоряет сходимость на 15% и повышает финальную точность моделей.


🟡Arxiv


@ai_machinelearning_big_data

#AI #ML #LLM #SemDiD
Please open Telegram to view this post
VIEW IN TELEGRAM



tgoop.com/machinelearning_interview/1923
Create:
Last Update:

📌SemDiD: Семантическое разнообразие ответов для LLM.

Исследователи из из Гонконгского университета и инженеры Alibaba научили LLM генерировать семантически разные ответы, заставляя их «думать» в ортогональных направлениях.

Наверняка каждый, кто работает с LLM, сталкивался с их любовью к самоповторам. Запрашиваешь несколько вариантов решения, а получаешь одну и ту же мысль, просто перефразированную.

Стандартные подходы к декодированию, temperature sampling или diverse beam search, создают лишь лексическое разнообразие, но пасуют, когда требуется семантическое. Это серьезная проблема для Best-of-N или RLHF. Ведь без по-настоящему разных идей и подходов к решению задачи эти методы теряют свою силу: выбирать лучший вариант не из чего, а обучать модель на однотипных примерах неэффективно.

Решение предложили в методе SemDiD (Semantic-guided Diverse Decoding). Его суть, если кратко, перестать играть с токенами на поверхности и начать управлять генерацией напрямую в пространстве эмбеддингов.

🟡Метод работает так.

Сначала, на старте, он принудительно направляет разные группы beams по ортогональным векторам в семантическом пространстве. Грубо говоря, это как дать команду разным поисковым группам двигаться строго на север, юг и запад, чтобы они гарантированно разошлись.

По мере генерации, когда жесткие директивы могут стать неоптимальными, включается второй механизм - inter-group repulsion. Он просто следит, чтобы смысловые траектории ответов не сближались, сохраняя их уникальность до самого конца.

Но как, гоняясь за разнообразием, не получить на выходе бессвязный бред?

SemDiD подходит к контролю качества уникально. Он не пытается слепо максимизировать вероятность последовательности, а использует ее лишь как нижнюю границу, чтобы отсечь совсем уж плохие варианты.

Кроме того, алгоритм корректирует системные искажения, когда вероятность токенов искусственно завышается в зависимости от их позиции в тексте.

Для баланса между качеством и разнообразием используется адаптивный механизм на основе гармонического среднего, который в каждый момент времени уделяет больше внимания той метрике, которая проседает.

🟡В тестах метод показал неплохие результаты.

На бенчмарках для Best-of-N, от MMLU-Pro+ до GSM8K, SemDiD увеличивает покрытие (шанс найти верный ответ) на 1.4%-5.2% по сравнению с аналогами.

🟡Но главный прорыв - в RLHF.

Генерируя для GRPO или RLOO семантически богатые наборы ответов, SemDiD предоставляет им более качественный материал для обучения. Это ускоряет сходимость на 15% и повышает финальную точность моделей.


🟡Arxiv


@ai_machinelearning_big_data

#AI #ML #LLM #SemDiD

BY Machine learning Interview





Share with your friend now:
tgoop.com/machinelearning_interview/1923

View MORE
Open in Telegram


Telegram News

Date: |

2How to set up a Telegram channel? (A step-by-step tutorial) End-to-end encryption is an important feature in messaging, as it's the first step in protecting users from surveillance. “Hey degen, are you stressed? Just let it all out,” he wrote, along with a link to join the group. Just as the Bitcoin turmoil continues, crypto traders have taken to Telegram to voice their feelings. Crypto investors can reduce their anxiety about losses by joining the “Bear Market Screaming Therapy Group” on Telegram. Select: Settings – Manage Channel – Administrators – Add administrator. From your list of subscribers, select the correct user. A new window will appear on the screen. Check the rights you’re willing to give to your administrator.
from us


Telegram Machine learning Interview
FROM American