MACHINELEARNING_INTERVIEW Telegram 1873
🛡️ Fault Tolerant Llama — обучение LLM в условиях экстремальной нестабильности, без чекпоинтов

Исследовательская команда продемонстрировала обучение языковой модели в условиях, приближённых к худшему сценарию: сотни имитированных отказов происходили каждые 15 секунд, а чекпоинты полностью отключены. Цель — проверить, как себя поведёт система с полной поддержкой fault-tolerance.

🧰 Что использовалось:

torchft — отказоустойчивая реализация DDP для PyTorch
torchtitan — фреймворк для масштабируемого обучения с параллелизмом
• Кластер от Crusoe Cloud: 300 GPU NVIDIA L40S
• Модель: LLaMA 3, 1B параметров

🏗️ Конфигурация:

• 30 узлов × 10 GPU = 30 изолированных replica-групп
• Внутригрупповая коммуникация: NCCL
• Межгрупповая: Gloo (быстрая переинициализация, важно для отказов)
• TorchFT координирует состояние с помощью глобального Lighthouse и локальных менеджеров

🔄 Восстановление без чекпоинтов:

Обычно сбой = загрузка чекпоинта.
Здесь: сбой = локальная перезагрузка группы, автоматическая синхронизация с другими группами.

Каждый возвращающийся узел получает актуальные веса через peer-to-peer от соседей и снова включается в обучение — без полной остановки, без потери прогресса.

📉 Результаты:

• Более 1200 успешных восстановлений
• Обучение остаётся стабильным, модель не деградирует
• Пики на графике — это просто "возвращенцы", не сбой всей системы

📦 Почему это важно:

✔️ Подходит для нестабильных сетей и распределённых сред
✔️ Убирает зависимость от чекпоинтов
✔️ Поддерживает гибкие конфигурации: TP, PP, DiLoCo и др.

📌 Подробнее



tgoop.com/machinelearning_interview/1873
Create:
Last Update:

🛡️ Fault Tolerant Llama — обучение LLM в условиях экстремальной нестабильности, без чекпоинтов

Исследовательская команда продемонстрировала обучение языковой модели в условиях, приближённых к худшему сценарию: сотни имитированных отказов происходили каждые 15 секунд, а чекпоинты полностью отключены. Цель — проверить, как себя поведёт система с полной поддержкой fault-tolerance.

🧰 Что использовалось:

torchft — отказоустойчивая реализация DDP для PyTorch
torchtitan — фреймворк для масштабируемого обучения с параллелизмом
• Кластер от Crusoe Cloud: 300 GPU NVIDIA L40S
• Модель: LLaMA 3, 1B параметров

🏗️ Конфигурация:

• 30 узлов × 10 GPU = 30 изолированных replica-групп
• Внутригрупповая коммуникация: NCCL
• Межгрупповая: Gloo (быстрая переинициализация, важно для отказов)
• TorchFT координирует состояние с помощью глобального Lighthouse и локальных менеджеров

🔄 Восстановление без чекпоинтов:

Обычно сбой = загрузка чекпоинта.
Здесь: сбой = локальная перезагрузка группы, автоматическая синхронизация с другими группами.

Каждый возвращающийся узел получает актуальные веса через peer-to-peer от соседей и снова включается в обучение — без полной остановки, без потери прогресса.

📉 Результаты:

• Более 1200 успешных восстановлений
• Обучение остаётся стабильным, модель не деградирует
• Пики на графике — это просто "возвращенцы", не сбой всей системы

📦 Почему это важно:

✔️ Подходит для нестабильных сетей и распределённых сред
✔️ Убирает зависимость от чекпоинтов
✔️ Поддерживает гибкие конфигурации: TP, PP, DiLoCo и др.

📌 Подробнее

BY Machine learning Interview








Share with your friend now:
tgoop.com/machinelearning_interview/1873

View MORE
Open in Telegram


Telegram News

Date: |

Over 33,000 people sent out over 1,000 doxxing messages in the group. Although the administrators tried to delete all of the messages, the posting speed was far too much for them to keep up. In the next window, choose the type of your channel. If you want your channel to be public, you need to develop a link for it. In the screenshot below, it’s ”/catmarketing.” If your selected link is unavailable, you’ll need to suggest another option. Add up to 50 administrators “[The defendant] could not shift his criminal liability,” Hui said. As five out of seven counts were serious, Hui sentenced Ng to six years and six months in jail.
from us


Telegram Machine learning Interview
FROM American