MACHINELEARNING_INTERVIEW Telegram 1829
Forwarded from Machinelearning
🌟 PlayDiffusion: инпейнт для речи.

Те, кто работает с синтезом речи, знают, что авторегрессионные трансформерные модели, хоть и хороши для генерации речи из текста с нуля, но создают кучу проблем, когда нужно редактирование. Стандартные методы, в виде полной перегенерации предложения, обходятся дорого по ресурсам и часто приводят к изменению интонации или ритма.

Замена отдельного слова обычно оставляет неприятные «склейки» на границах, а перегенерация с середины фразы может испортить уже существующую часть. Все это бьет по естественности и связности звучания.

PlayAI выпустила PlayDiffusion 1.0 – диффузионную модель для редактирования речи, которая умеет изменять нужные участки аудио, сохраняя при этом общую гладкость и характеристики голоса. Причем модель пригодна как для реальной речи, так и для аудио, сгенерированного другими TTS-моделями.

В PlayDiffusion аудиопоток кодируется в дискретное пространство, превращаясь в более компактную последовательность токенов. Затем, тот сегмент, который требует модификации маскируется.

После этого задействуется сама диффузионная модель. Она, опираясь на обновленный текстовый контент, «восстанавливает» замаскированную область, убирая шум. На выходе последовательность токенов снова преобразуется в полноценный звук с помощью декодера BigVGAN.

Чтобы добиться таких результатов, PlayAI взяли за основу текстовую трансформерную архитектуру и внесли несколько ключевых модификаций:

🟢Во-первых, это некаузальное маскирование, позволяющее модели одновременно учитывать прошлые, настоящие и будущие токены, в отличие от стандартных GPT-подобных моделей.

🟢Во-вторых, используется кастомный BPE-токенизатор всего на 10 000 текстовых токенов, что резко сокращает размер таблицы эмбеддингов и ускоряет вычисления.

🟢В-третьих, модель учитывает характеристики диктора с помощью предобученной эмбеддинг-модели, которая преобразует аудиозаписи переменной длины в векторы фиксированного размера.

Интересно, что если замаскировать вообще всю аудиодорожку, PlayDiffusion может работать как TTS. В отличие от авторегрессионных моделей, которые генерируют каждый токен последовательно, опираясь на предыдущие, диффузионные модели генерят все токены одновременно, а затем уточняют их за фиксированное число шагов.

Например, для генерации 20 секунд аудио кодеком на 50 Гц авторегрессионной модели потребуется 1000 шагов. PlayDiffusion же способен выдать все 1000 токенов сразу и уточнить их всего за 20 итераций – это до 50 раз эффективнее по количеству шагов генерации.


📌Лицензирование: Apache 2.0 License.


🟡Статья
🟡Модель
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #TTS #Inpainting #PlayDiffusion #PlayAI
Please open Telegram to view this post
VIEW IN TELEGRAM
7🔥5🥰1



tgoop.com/machinelearning_interview/1829
Create:
Last Update:

🌟 PlayDiffusion: инпейнт для речи.

Те, кто работает с синтезом речи, знают, что авторегрессионные трансформерные модели, хоть и хороши для генерации речи из текста с нуля, но создают кучу проблем, когда нужно редактирование. Стандартные методы, в виде полной перегенерации предложения, обходятся дорого по ресурсам и часто приводят к изменению интонации или ритма.

Замена отдельного слова обычно оставляет неприятные «склейки» на границах, а перегенерация с середины фразы может испортить уже существующую часть. Все это бьет по естественности и связности звучания.

PlayAI выпустила PlayDiffusion 1.0 – диффузионную модель для редактирования речи, которая умеет изменять нужные участки аудио, сохраняя при этом общую гладкость и характеристики голоса. Причем модель пригодна как для реальной речи, так и для аудио, сгенерированного другими TTS-моделями.

В PlayDiffusion аудиопоток кодируется в дискретное пространство, превращаясь в более компактную последовательность токенов. Затем, тот сегмент, который требует модификации маскируется.

После этого задействуется сама диффузионная модель. Она, опираясь на обновленный текстовый контент, «восстанавливает» замаскированную область, убирая шум. На выходе последовательность токенов снова преобразуется в полноценный звук с помощью декодера BigVGAN.

Чтобы добиться таких результатов, PlayAI взяли за основу текстовую трансформерную архитектуру и внесли несколько ключевых модификаций:

🟢Во-первых, это некаузальное маскирование, позволяющее модели одновременно учитывать прошлые, настоящие и будущие токены, в отличие от стандартных GPT-подобных моделей.

🟢Во-вторых, используется кастомный BPE-токенизатор всего на 10 000 текстовых токенов, что резко сокращает размер таблицы эмбеддингов и ускоряет вычисления.

🟢В-третьих, модель учитывает характеристики диктора с помощью предобученной эмбеддинг-модели, которая преобразует аудиозаписи переменной длины в векторы фиксированного размера.

Интересно, что если замаскировать вообще всю аудиодорожку, PlayDiffusion может работать как TTS. В отличие от авторегрессионных моделей, которые генерируют каждый токен последовательно, опираясь на предыдущие, диффузионные модели генерят все токены одновременно, а затем уточняют их за фиксированное число шагов.

Например, для генерации 20 секунд аудио кодеком на 50 Гц авторегрессионной модели потребуется 1000 шагов. PlayDiffusion же способен выдать все 1000 токенов сразу и уточнить их всего за 20 итераций – это до 50 раз эффективнее по количеству шагов генерации.


📌Лицензирование: Apache 2.0 License.


🟡Статья
🟡Модель
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #TTS #Inpainting #PlayDiffusion #PlayAI

BY Machine learning Interview




Share with your friend now:
tgoop.com/machinelearning_interview/1829

View MORE
Open in Telegram


Telegram News

Date: |

The creator of the channel becomes its administrator by default. If you need help managing your channel, you can add more administrators from your subscriber base. You can provide each admin with limited or full rights to manage the channel. For example, you can allow an administrator to publish and edit content while withholding the right to add new subscribers. Developing social channels based on exchanging a single message isn’t exactly new, of course. Back in 2014, the “Yo” app was launched with the sole purpose of enabling users to send each other the greeting “Yo.” Ng, who had pleaded not guilty to all charges, had been detained for more than 20 months. His channel was said to have contained around 120 messages and photos that incited others to vandalise pro-government shops and commit criminal damage targeting police stations. Joined by Telegram's representative in Brazil, Alan Campos, Perekopsky noted the platform was unable to cater to some of the TSE requests due to the company's operational setup. But Perekopsky added that these requests could be studied for future implementation. Matt Hussey, editorial director at NEAR Protocol also responded to this news with “#meIRL”. Just as you search “Bear Market Screaming” in Telegram, you will see a Pepe frog yelling as the group’s featured image.
from us


Telegram Machine learning Interview
FROM American