MACHINELEARNING_INTERVIEW Telegram 1661
Forwarded from Machinelearning
🌟 KBLaM: новая архитектура интеграции знаний для языковых моделей от Microsoft Research.

Microsoft Research представила KBLaM - архитектуру, которая решает ключевую проблему LLM — добавление новых внешних знаний. В отличие от традиционных методов файнтюна и RAG, KBLaM кодирует новые для LLM структурированные данные в виде векторных пар «ключ-значение», встраивая их напрямую в слои внимания модели. Это позволяет избежать дорогостоящего дообучения и построение дополнительных модулей, сохраняя линейную масштабируемость даже для баз знаний в 10 000 триплетов.

В KBLaM триплет — это структурированный элемент знания, состоящий из трех компонентов: сущности, свойства и значения. Например, в утверждении «Москва — столица России» сущностью выступает «Москва», свойством — «столица», а значением — «Россия».


В основе KBLaM - «прямоугольный механизм внимания»: языковые токены взаимодействуют с токенами знаний, но не наоборот. Такая структура сокращает вычислительные затраты до линейных, позволяя обрабатывать эквивалент 200 тыс. токенов на одном GPU. При этом модель динамически обновляет знания без пересчёта всей базы — достаточно изменить один триплет.

Эксперименты с KBLaM показали, что он не только эффективен, но и прозрачен: веса внимания визуализируют, какие факты использует модель. Например, при запросе о медицинском диагнозе высокие оценки внимания к соответствующим триплетам снижают риск «галлюцинаций», при этом, если ответ на запрос лежит вне базы знаний, модель отказывается на него отвечать.

Как заявляют авторы, KBLaM — не просто шаг к умным LLM, а мост между обученными на базовых знаниях моделями и реальным миром, где знания постоянно обновляются.

В опубликованном на Github коде для применения KBLaM поддерживаются модели с HF:

🟢Llama-3-8B-Instruct;
🟢Llama-3.2-1B-Instruct;
🟢Phi-3-mini-4k-instruct.

и эмбединги для генерации базы знаний:

🟠text-embedding-ada-002;
🟠all-MiniLM-L6-v2.

⚠️ Чтобы добавить поддержку других моделей, необходимо отредактировать скрипты обработки моделей и включить в них адаптер, подобный llama_model.py в src/kblam/models.


📌Лицензирование: MIT License.


🟡Статья
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #MicrosoftResearch #KBLaM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥19👍4❤‍🔥21🥰1



tgoop.com/machinelearning_interview/1661
Create:
Last Update:

🌟 KBLaM: новая архитектура интеграции знаний для языковых моделей от Microsoft Research.

Microsoft Research представила KBLaM - архитектуру, которая решает ключевую проблему LLM — добавление новых внешних знаний. В отличие от традиционных методов файнтюна и RAG, KBLaM кодирует новые для LLM структурированные данные в виде векторных пар «ключ-значение», встраивая их напрямую в слои внимания модели. Это позволяет избежать дорогостоящего дообучения и построение дополнительных модулей, сохраняя линейную масштабируемость даже для баз знаний в 10 000 триплетов.

В KBLaM триплет — это структурированный элемент знания, состоящий из трех компонентов: сущности, свойства и значения. Например, в утверждении «Москва — столица России» сущностью выступает «Москва», свойством — «столица», а значением — «Россия».


В основе KBLaM - «прямоугольный механизм внимания»: языковые токены взаимодействуют с токенами знаний, но не наоборот. Такая структура сокращает вычислительные затраты до линейных, позволяя обрабатывать эквивалент 200 тыс. токенов на одном GPU. При этом модель динамически обновляет знания без пересчёта всей базы — достаточно изменить один триплет.

Эксперименты с KBLaM показали, что он не только эффективен, но и прозрачен: веса внимания визуализируют, какие факты использует модель. Например, при запросе о медицинском диагнозе высокие оценки внимания к соответствующим триплетам снижают риск «галлюцинаций», при этом, если ответ на запрос лежит вне базы знаний, модель отказывается на него отвечать.

Как заявляют авторы, KBLaM — не просто шаг к умным LLM, а мост между обученными на базовых знаниях моделями и реальным миром, где знания постоянно обновляются.

В опубликованном на Github коде для применения KBLaM поддерживаются модели с HF:

🟢Llama-3-8B-Instruct;
🟢Llama-3.2-1B-Instruct;
🟢Phi-3-mini-4k-instruct.

и эмбединги для генерации базы знаний:

🟠text-embedding-ada-002;
🟠all-MiniLM-L6-v2.

⚠️ Чтобы добавить поддержку других моделей, необходимо отредактировать скрипты обработки моделей и включить в них адаптер, подобный llama_model.py в src/kblam/models.


📌Лицензирование: MIT License.


🟡Статья
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #MicrosoftResearch #KBLaM

BY Machine learning Interview








Share with your friend now:
tgoop.com/machinelearning_interview/1661

View MORE
Open in Telegram


Telegram News

Date: |

To upload a logo, click the Menu icon and select “Manage Channel.” In a new window, hit the Camera icon. With the administration mulling over limiting access to doxxing groups, a prominent Telegram doxxing group apparently went on a "revenge spree." Informative Healing through screaming therapy 2How to set up a Telegram channel? (A step-by-step tutorial)
from us


Telegram Machine learning Interview
FROM American