MACHINELEARNING_INTERVIEW Telegram 1646
⚡️ OpenPipe Deductive Reasoning Qwen 32B GGUF

Адаптация Qwen-32B, оптимизированная под рассуждения в GGUF формат.

Превосходит Claude 3.7 Sonnet в задачах дедуктивного мышления!

Превосходит DeepSeek R1, o1 и o3-mini в решении головоломок «Temporal Clue» при 100-кратном снижении стоимости умозаключений.

Дедуктивное рассуждение: Модель дообучена для выполнения задач, где требуется логический анализ и последовательное обоснование, что полезно для создания интеллектуальных систем и сложного анализа данных.
Формат GGUF: Конвертация в GGUF обеспечивает более эффективное использование ресурсов, ускоряет загрузку модели и облегчает её интеграцию в разнообразные приложения.
Практическое применение: Этот инструмент интересен разработчикам и исследователям ИИ, стремящимся улучшить дедуктивные способности систем, а также тем, кто ищет способы оптимизации работы с большими языковыми моделями в реальных проектах.

HF: https://huggingface.co/bartowski/OpenPipe_Deductive-Reasoning-Qwen-32B-GGUF
Dataset: https://gist.github.com/bartowski1182/eb213dccb3571f863da82e99418f81e8
LM Studio: https://lmstudio.ai/

#qwen #reasoning #GGUF
5🔥3



tgoop.com/machinelearning_interview/1646
Create:
Last Update:

⚡️ OpenPipe Deductive Reasoning Qwen 32B GGUF

Адаптация Qwen-32B, оптимизированная под рассуждения в GGUF формат.

Превосходит Claude 3.7 Sonnet в задачах дедуктивного мышления!

Превосходит DeepSeek R1, o1 и o3-mini в решении головоломок «Temporal Clue» при 100-кратном снижении стоимости умозаключений.

Дедуктивное рассуждение: Модель дообучена для выполнения задач, где требуется логический анализ и последовательное обоснование, что полезно для создания интеллектуальных систем и сложного анализа данных.
Формат GGUF: Конвертация в GGUF обеспечивает более эффективное использование ресурсов, ускоряет загрузку модели и облегчает её интеграцию в разнообразные приложения.
Практическое применение: Этот инструмент интересен разработчикам и исследователям ИИ, стремящимся улучшить дедуктивные способности систем, а также тем, кто ищет способы оптимизации работы с большими языковыми моделями в реальных проектах.

HF: https://huggingface.co/bartowski/OpenPipe_Deductive-Reasoning-Qwen-32B-GGUF
Dataset: https://gist.github.com/bartowski1182/eb213dccb3571f863da82e99418f81e8
LM Studio: https://lmstudio.ai/

#qwen #reasoning #GGUF

BY Machine learning Interview






Share with your friend now:
tgoop.com/machinelearning_interview/1646

View MORE
Open in Telegram


Telegram News

Date: |

6How to manage your Telegram channel? 5Telegram Channel avatar size/dimensions Developing social channels based on exchanging a single message isn’t exactly new, of course. Back in 2014, the “Yo” app was launched with the sole purpose of enabling users to send each other the greeting “Yo.” The initiatives announced by Perekopsky include monitoring the content in groups. According to the executive, posts identified as lacking context or as containing false information will be flagged as a potential source of disinformation. The content is then forwarded to Telegram's fact-checking channels for analysis and subsequent publication of verified information. Hui said the time period and nature of some offences “overlapped” and thus their prison terms could be served concurrently. The judge ordered Ng to be jailed for a total of six years and six months.
from us


Telegram Machine learning Interview
FROM American