MACHINELEARNING_INTERVIEW Telegram 1521
Forwarded from Machinelearning
🌟 RT-DETRv2: усовершенствованная CV-модель для детекции объектов в реальном времени.

RT-DETRv2 - новая версия RT-DETR, альтернативы YOLO. RT-DETRv2 получила ряд улучшений: повышение гибкости, практичности и производительности.

Ключевое изменение - модификация модуля deformable attention в декодере. В RT-DETRv2 предлагается устанавливать различное количество точек выборки для признаков разных масштабов. Это дает возможность более эффективно извлекать многомасштабные признаки, делая ее более адаптировной к множествам сценариям детекции.

Чтобы сделать модель модель более практичной, заменили оператор grid_sample, характерный для DETR, на опциональный discrete_sample, который выполняет округление предсказанных смещений выборки, что ускоряет процесс без значительной потери точности.

RT-DETRv2 обучается стратегией динамического усиления данных (dynamic data augmentation). На ранних этапах используются более интенсивные методы аугментации, чтобы модель лучше обобщала данные. На поздних этапах уровень аугментации снижается, что позволяет модели адаптироваться к целевой области.

В новой версии используется кастомизация гиперпараметров в зависимости от масштаба модели. Например, для ResNet18 увеличивается скорость обучения, тогда как для более крупных моделей - ResNet101, она снижается.

Тесты RT-DETRv2 выполнялись на наборе датасете COCO, где модель показала улучшение метрики AP на 0.3–1.4 пункта по сравнению с RT-DETR, сохраняя при этом высокую скорость работы. Например, RT-DETRv2-S с архитектурой ResNet18 достигла AP 47.9, что на 1.4 пункта выше, чем у RT-DETR-S.

Скрипты для файнтюна RT-DETRv2 с Trainer или Accelerate размещены в репозитории HuggingFace на Github, а ноутбук простого инференса локально - тут или запустить в Google Collab.


📌Лицензирование: Apache 2.0


🟡Статья
🟡Arxiv
🟡Google Collab инференса
🖥Github


#AI #CV #RTDETRv2
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8🔥54



tgoop.com/machinelearning_interview/1521
Create:
Last Update:

🌟 RT-DETRv2: усовершенствованная CV-модель для детекции объектов в реальном времени.

RT-DETRv2 - новая версия RT-DETR, альтернативы YOLO. RT-DETRv2 получила ряд улучшений: повышение гибкости, практичности и производительности.

Ключевое изменение - модификация модуля deformable attention в декодере. В RT-DETRv2 предлагается устанавливать различное количество точек выборки для признаков разных масштабов. Это дает возможность более эффективно извлекать многомасштабные признаки, делая ее более адаптировной к множествам сценариям детекции.

Чтобы сделать модель модель более практичной, заменили оператор grid_sample, характерный для DETR, на опциональный discrete_sample, который выполняет округление предсказанных смещений выборки, что ускоряет процесс без значительной потери точности.

RT-DETRv2 обучается стратегией динамического усиления данных (dynamic data augmentation). На ранних этапах используются более интенсивные методы аугментации, чтобы модель лучше обобщала данные. На поздних этапах уровень аугментации снижается, что позволяет модели адаптироваться к целевой области.

В новой версии используется кастомизация гиперпараметров в зависимости от масштаба модели. Например, для ResNet18 увеличивается скорость обучения, тогда как для более крупных моделей - ResNet101, она снижается.

Тесты RT-DETRv2 выполнялись на наборе датасете COCO, где модель показала улучшение метрики AP на 0.3–1.4 пункта по сравнению с RT-DETR, сохраняя при этом высокую скорость работы. Например, RT-DETRv2-S с архитектурой ResNet18 достигла AP 47.9, что на 1.4 пункта выше, чем у RT-DETR-S.

Скрипты для файнтюна RT-DETRv2 с Trainer или Accelerate размещены в репозитории HuggingFace на Github, а ноутбук простого инференса локально - тут или запустить в Google Collab.


📌Лицензирование: Apache 2.0


🟡Статья
🟡Arxiv
🟡Google Collab инференса
🖥Github


#AI #CV #RTDETRv2

BY Machine learning Interview





Share with your friend now:
tgoop.com/machinelearning_interview/1521

View MORE
Open in Telegram


Telegram News

Date: |

The creator of the channel becomes its administrator by default. If you need help managing your channel, you can add more administrators from your subscriber base. You can provide each admin with limited or full rights to manage the channel. For example, you can allow an administrator to publish and edit content while withholding the right to add new subscribers. During a meeting with the president of the Supreme Electoral Court (TSE) on June 6, Telegram's Vice President Ilya Perekopsky announced the initiatives. According to the executive, Brazil is the first country in the world where Telegram is introducing the features, which could be expanded to other countries facing threats to democracy through the dissemination of false content. Telegram Android app: Open the chats list, click the menu icon and select “New Channel.” Telegram iOS app: In the “Chats” tab, click the new message icon in the right upper corner. Select “New Channel.” Although some crypto traders have moved toward screaming as a coping mechanism, several mental health experts call this therapy a pseudoscience. The crypto community finds its way to engage in one or the other way and share its feelings with other fellow members.
from us


Telegram Machine learning Interview
FROM American