Warning: file_put_contents(aCache/aDaily/post/machinelearning_interview/-1414-1415-1416-1414-): Failed to open stream: No space left on device in /var/www/tgoop/post.php on line 50
Machine learning Interview@machinelearning_interview P.1416
MACHINELEARNING_INTERVIEW Telegram 1416
Forwarded from Machinelearning
🌟 OLA-VLM: метод повышения визуального восприятия в MLLM с помощью вспомогательной дистилляции эмбедингов.

OLA-VLM - метод, который предлагает дистиллировать знания от визуальных энкодеров в противовес традиционному способу обучения MLLM.

В качестве целевых визуальных энкодеров были выбраны модели сегментации, оценки глубины и генерации изображений. На каждом слое LLM обучался проб, который должен прогнозировать выход соответствующего целевого энкодера.

Так архитектура OLA-VLM получила предикторы встраивания, которые получают токены из LLM и генерируют предсказания для вычисления потери встраивания. Эта потеря минимизируется вместе с потерей предсказания следующего токена.

Для улучшения восприятия целевой информации OLA-VLM использует специальные токены ⟨t⟩, которые добавляются к токенам изображения на входе LLM. Во время фазы настройки MLLM обучается только с использованием потери предсказания следующего токена. При этом специальные токены ⟨t⟩ остаются в входной последовательности, формируя неявную визуальную цепь рассуждений.

Эксперименты показали, что OLA-VLM превосходит модели семейства LLaVA-1.5 как по качеству визуальных представлений, так и по эффективности на различных тестах.

Методом OLA-VLM были обучены 12 моделей на LLMs Phi3-4K-mini и Llama3-8b с разными базовыми (ViT, CLIP-ConvNeXT) и целевыми (depth, segmentation, generation) энкодерами. Доступны версии PT (Pre-Training) и IFT (Instruction Fine-Tuning).

▶️ Локальная установка и запуск web demo c GrarioUI:

# Clone repo
git clone https://github.com/SHI-Labs/OLA-VLM
cd OLA-VLM

# Create conda env
conda create -n ola_vlm -y
conda activate ola_vlm

# Install dependencies
pip install -e .["demo"]
pip install flash-attn --no-build-isolation
pip install scikit-learn icecream datasets pytorch-fid lpips opencv-python-headless
pip install setuptools==61.0.0
pip install huggingface_hub==0.24.7
pip install transformers==4.41.1

# Run webUI with one of models
CUDA_VISIBLE_DEVICES=0 python demo.py --model-path %path_to_model% --PT-model-path %path_to_model%


📌Лицензирование моделей: Apache 2.0 License.


🟡Страница проекта
🟡Набор моделей
🟡Arxiv
🖥GitHub



@ai_machinelearning_big_data

#AI #ML #MMLM #OLA-VLM
Please open Telegram to view this post
VIEW IN TELEGRAM
9👍2🔥1



tgoop.com/machinelearning_interview/1416
Create:
Last Update:

🌟 OLA-VLM: метод повышения визуального восприятия в MLLM с помощью вспомогательной дистилляции эмбедингов.

OLA-VLM - метод, который предлагает дистиллировать знания от визуальных энкодеров в противовес традиционному способу обучения MLLM.

В качестве целевых визуальных энкодеров были выбраны модели сегментации, оценки глубины и генерации изображений. На каждом слое LLM обучался проб, который должен прогнозировать выход соответствующего целевого энкодера.

Так архитектура OLA-VLM получила предикторы встраивания, которые получают токены из LLM и генерируют предсказания для вычисления потери встраивания. Эта потеря минимизируется вместе с потерей предсказания следующего токена.

Для улучшения восприятия целевой информации OLA-VLM использует специальные токены ⟨t⟩, которые добавляются к токенам изображения на входе LLM. Во время фазы настройки MLLM обучается только с использованием потери предсказания следующего токена. При этом специальные токены ⟨t⟩ остаются в входной последовательности, формируя неявную визуальную цепь рассуждений.

Эксперименты показали, что OLA-VLM превосходит модели семейства LLaVA-1.5 как по качеству визуальных представлений, так и по эффективности на различных тестах.

Методом OLA-VLM были обучены 12 моделей на LLMs Phi3-4K-mini и Llama3-8b с разными базовыми (ViT, CLIP-ConvNeXT) и целевыми (depth, segmentation, generation) энкодерами. Доступны версии PT (Pre-Training) и IFT (Instruction Fine-Tuning).

▶️ Локальная установка и запуск web demo c GrarioUI:

# Clone repo
git clone https://github.com/SHI-Labs/OLA-VLM
cd OLA-VLM

# Create conda env
conda create -n ola_vlm -y
conda activate ola_vlm

# Install dependencies
pip install -e .["demo"]
pip install flash-attn --no-build-isolation
pip install scikit-learn icecream datasets pytorch-fid lpips opencv-python-headless
pip install setuptools==61.0.0
pip install huggingface_hub==0.24.7
pip install transformers==4.41.1

# Run webUI with one of models
CUDA_VISIBLE_DEVICES=0 python demo.py --model-path %path_to_model% --PT-model-path %path_to_model%


📌Лицензирование моделей: Apache 2.0 License.


🟡Страница проекта
🟡Набор моделей
🟡Arxiv
🖥GitHub



@ai_machinelearning_big_data

#AI #ML #MMLM #OLA-VLM

BY Machine learning Interview





Share with your friend now:
tgoop.com/machinelearning_interview/1416

View MORE
Open in Telegram


Telegram News

Date: |

While some crypto traders move toward screaming as a coping mechanism, many mental health experts have argued that “scream therapy” is pseudoscience. Scientific research or no, it obviously feels good. ‘Ban’ on Telegram Matt Hussey, editorial director at NEAR Protocol also responded to this news with “#meIRL”. Just as you search “Bear Market Screaming” in Telegram, you will see a Pepe frog yelling as the group’s featured image. While the character limit is 255, try to fit into 200 characters. This way, users will be able to take in your text fast and efficiently. Reveal the essence of your channel and provide contact information. For example, you can add a bot name, link to your pricing plans, etc. How to Create a Private or Public Channel on Telegram?
from us


Telegram Machine learning Interview
FROM American