MACHINELEARNING_INTERVIEW Telegram 1378
Forwarded from Machinelearning
⚡️ QwQ-32B-Preview: экспериментальная ризонинг-модель от Qwen.

QwQ (Qwen with Questions) – экспериментальная исследовательская модель, разработанная Qwen Team с фокусом на развитие способности рассуждения.

QwQ отличается любознательностью, подходя к каждой проблеме – будь то математика, программирование или знания о мире – с подлинным удивлением и сомнением. Прежде чем остановиться на каком-либо ответе, модель подвергает сомнению свои собственные предположения, исследуя разные пути рассуждений в поисках более глубокой истины.

QwQ-32B-Preview, предварительная версия модели, которая демонстрирует аналитические способности в математике и программировании, показывая топовые результаты в тестах:

🟢65.2% на GPQA (тест на решение научных задач на уровне выпускника);
🟢50.0% на AIME (оценка математических способностей);
🟢90.6% на MATH-500 (тест на понимание математики по различным темам);
🟢50.0% на LiveCodeBench (тест на навыки программирования в реальных сценариях).

Архитектура QwQ основана на transformers с использованием RoPE, SwiGLU, RMSNorm и Attention QKV bias. Модель имеет 32.5 млрд. параметров, 64 слоя и 40 attention heads для Q и 8 для KV. Контекст модели - 32 768 токенов.

⚠️ Как у любого эксперимента, у QwQ есть ограничения:

🟠Модель может смешивать языки или переключаться между ними неожиданно, влияя на четкость ответов.

🟠QwQ склонна входить в циклические шаблоны рассуждений, что приводит к длинным ответам без окончательного результата.

⚠️ Сообществом LM Studio опубликованы квантованные версии в формате GGUF в разрядности от 3-bit (17.2 Gb) до 8-bit (34.8 GB), совместимые для запуска в llama.cpp (release b4191) и LM Studio.


▶️Пример инференса на HF Transformers:

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "Qwen/QwQ-32B-Preview"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r in strawberry."
messages = [
{"role": "system", "content": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]


📌Лицензирование: Apache 2.0 License.


🟡Страница проекта
🟡Модель
🟡Набор GGUF версий
🟡Demo
🟡Сообщество в Discord


@ai_machinelearning_big_data

#AI #ML #LLM #QwQ #Qwen
Please open Telegram to view this post
VIEW IN TELEGRAM
👍87🥴1



tgoop.com/machinelearning_interview/1378
Create:
Last Update:

⚡️ QwQ-32B-Preview: экспериментальная ризонинг-модель от Qwen.

QwQ (Qwen with Questions) – экспериментальная исследовательская модель, разработанная Qwen Team с фокусом на развитие способности рассуждения.

QwQ отличается любознательностью, подходя к каждой проблеме – будь то математика, программирование или знания о мире – с подлинным удивлением и сомнением. Прежде чем остановиться на каком-либо ответе, модель подвергает сомнению свои собственные предположения, исследуя разные пути рассуждений в поисках более глубокой истины.

QwQ-32B-Preview, предварительная версия модели, которая демонстрирует аналитические способности в математике и программировании, показывая топовые результаты в тестах:

🟢65.2% на GPQA (тест на решение научных задач на уровне выпускника);
🟢50.0% на AIME (оценка математических способностей);
🟢90.6% на MATH-500 (тест на понимание математики по различным темам);
🟢50.0% на LiveCodeBench (тест на навыки программирования в реальных сценариях).

Архитектура QwQ основана на transformers с использованием RoPE, SwiGLU, RMSNorm и Attention QKV bias. Модель имеет 32.5 млрд. параметров, 64 слоя и 40 attention heads для Q и 8 для KV. Контекст модели - 32 768 токенов.

⚠️ Как у любого эксперимента, у QwQ есть ограничения:

🟠Модель может смешивать языки или переключаться между ними неожиданно, влияя на четкость ответов.

🟠QwQ склонна входить в циклические шаблоны рассуждений, что приводит к длинным ответам без окончательного результата.

⚠️ Сообществом LM Studio опубликованы квантованные версии в формате GGUF в разрядности от 3-bit (17.2 Gb) до 8-bit (34.8 GB), совместимые для запуска в llama.cpp (release b4191) и LM Studio.


▶️Пример инференса на HF Transformers:

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "Qwen/QwQ-32B-Preview"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r in strawberry."
messages = [
{"role": "system", "content": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]


📌Лицензирование: Apache 2.0 License.


🟡Страница проекта
🟡Модель
🟡Набор GGUF версий
🟡Demo
🟡Сообщество в Discord


@ai_machinelearning_big_data

#AI #ML #LLM #QwQ #Qwen

BY Machine learning Interview






Share with your friend now:
tgoop.com/machinelearning_interview/1378

View MORE
Open in Telegram


Telegram News

Date: |

Matt Hussey, editorial director at NEAR Protocol also responded to this news with “#meIRL”. Just as you search “Bear Market Screaming” in Telegram, you will see a Pepe frog yelling as the group’s featured image. How to Create a Private or Public Channel on Telegram? How to build a private or public channel on Telegram? Telegram channels enable users to broadcast messages to multiple users simultaneously. Like on social media, users need to subscribe to your channel to get access to your content published by one or more administrators. Select “New Channel”
from us


Telegram Machine learning Interview
FROM American