MACHINELEARNING_INTERVIEW Telegram 1369
⭐️ Katz - это мощный инструментарий от facebookresearch
для анализа временных рядов.

Это легкая и простая в использовании библиотека .

Она позволяет делать:
- Прогнозирование
- Обработку данных
- Извлечение признаков
- Моделирование


Установка:
pip install --upgrade pip
pip install kats

Пример использования:

# import packages
import numpy as np
import pandas as pd

from kats.consts import TimeSeriesData
from kats.detectors.cusum_detection import CUSUMDetector

# simulate time series with increase
np.random.seed(10)
df_increase = pd.DataFrame(
{
'time': pd.date_range('2019-01-01', '2019-03-01'),
'increase':np.concatenate([np.random.normal(1,0.2,30), np.random.normal(2,0.2,30)]),
}
)

# convert to TimeSeriesData object
timeseries = TimeSeriesData(df_increase)

# run detector and find change points
change_points = CUSUMDetector(timeseries).detector()

`
Примеры работы: https://github.com/facebookresearch/Kats/tree/main/tutorials
Пакет Kats Python: https://pypi.org/project/kats/
Блог Facebook: https://engineering.fb.com/2021/06/21/open-source/kats/
Исходный код: https://github.com/facebookresearch/kats

@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
👍183🔥31



tgoop.com/machinelearning_interview/1369
Create:
Last Update:

⭐️ Katz - это мощный инструментарий от facebookresearch
для анализа временных рядов.

Это легкая и простая в использовании библиотека .

Она позволяет делать:
- Прогнозирование
- Обработку данных
- Извлечение признаков
- Моделирование


Установка:
pip install --upgrade pip
pip install kats

Пример использования:


# import packages
import numpy as np
import pandas as pd

from kats.consts import TimeSeriesData
from kats.detectors.cusum_detection import CUSUMDetector

# simulate time series with increase
np.random.seed(10)
df_increase = pd.DataFrame(
{
'time': pd.date_range('2019-01-01', '2019-03-01'),
'increase':np.concatenate([np.random.normal(1,0.2,30), np.random.normal(2,0.2,30)]),
}
)

# convert to TimeSeriesData object
timeseries = TimeSeriesData(df_increase)

# run detector and find change points
change_points = CUSUMDetector(timeseries).detector()

`
Примеры работы: https://github.com/facebookresearch/Kats/tree/main/tutorials
Пакет Kats Python: https://pypi.org/project/kats/
Блог Facebook: https://engineering.fb.com/2021/06/21/open-source/kats/
Исходный код: https://github.com/facebookresearch/kats

@machinelearning_interview

BY Machine learning Interview




Share with your friend now:
tgoop.com/machinelearning_interview/1369

View MORE
Open in Telegram


Telegram News

Date: |

Telegram message that reads: "Bear Market Screaming Therapy Group. You are only allowed to send screaming voice notes. Everything else = BAN. Text pics, videos, stickers, gif = BAN. Anything other than screaming = BAN. You think you are smart = BAN. Those being doxxed include outgoing Chief Executive Carrie Lam Cheng Yuet-ngor, Chung and police assistant commissioner Joe Chan Tung, who heads police's cyber security and technology crime bureau. Telegram Channels requirements & features Healing through screaming therapy 6How to manage your Telegram channel?
from us


Telegram Machine learning Interview
FROM American