MACHINELEARNING_INTERVIEW Telegram 1357
Forwarded from Machinelearning
⚡️ BRIA Background Removal v2.0 Model.

RMBG v2.0 - новая модель удаления фона, предназначенная для эффективного отделения переднего плана от фона в различных категориях и типах изображений. Точность, эффективность и универсальность RMBG v2.0 конкурирует с ведущими SOTA-моделями.

RMBG-2.0 разработана на основе архитектуры BiRefNet и обучена на более чем 15 000 высококачественных, высокого разрешения, вручную маркированных (с точностью до пикселя), полностью лицензированных изображений.

Модель доступна на HF в двух версиях : pytorch и safetensors. Демо можно попробовать на HF Space.

▶️Пример кода запуска на Transformers:

from PIL import Image
import matplotlib.pyplot as plt
import torch
from torchvision import transforms
from transformers import AutoModelForImageSegmentation

model = AutoModelForImageSegmentation.from_pretrained('briaai/RMBG-2.0', trust_remote_code=True)
torch.set_float32_matmul_precision(['high', 'highest'][0])
model.to('cuda')
model.eval()

# Data settings
image_size = (1024, 1024)
transform_image = transforms.Compose([
transforms.Resize(image_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])

image = Image.open(input_image_path)
input_images = transform_image(image).unsqueeze(0).to('cuda')

# Prediction
with torch.no_grad():
preds = model(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image.size)
image.putalpha(mask)

image.save("no_bg_image.png")


📌Лицензирование:

🟢Некоммерческое использование: Creative Commons license
🟠Коммерческое использование: на основании коммерческого соглашения с BRIA


🟡Модель
🟡Demo


@ai_machinelearning_big_data

#AI #ML #BiRefNet #RMBG #BRIAAI
Please open Telegram to view this post
VIEW IN TELEGRAM
14👍4



tgoop.com/machinelearning_interview/1357
Create:
Last Update:

⚡️ BRIA Background Removal v2.0 Model.

RMBG v2.0 - новая модель удаления фона, предназначенная для эффективного отделения переднего плана от фона в различных категориях и типах изображений. Точность, эффективность и универсальность RMBG v2.0 конкурирует с ведущими SOTA-моделями.

RMBG-2.0 разработана на основе архитектуры BiRefNet и обучена на более чем 15 000 высококачественных, высокого разрешения, вручную маркированных (с точностью до пикселя), полностью лицензированных изображений.

Модель доступна на HF в двух версиях : pytorch и safetensors. Демо можно попробовать на HF Space.

▶️Пример кода запуска на Transformers:

from PIL import Image
import matplotlib.pyplot as plt
import torch
from torchvision import transforms
from transformers import AutoModelForImageSegmentation

model = AutoModelForImageSegmentation.from_pretrained('briaai/RMBG-2.0', trust_remote_code=True)
torch.set_float32_matmul_precision(['high', 'highest'][0])
model.to('cuda')
model.eval()

# Data settings
image_size = (1024, 1024)
transform_image = transforms.Compose([
transforms.Resize(image_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])

image = Image.open(input_image_path)
input_images = transform_image(image).unsqueeze(0).to('cuda')

# Prediction
with torch.no_grad():
preds = model(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image.size)
image.putalpha(mask)

image.save("no_bg_image.png")


📌Лицензирование:

🟢Некоммерческое использование: Creative Commons license
🟠Коммерческое использование: на основании коммерческого соглашения с BRIA


🟡Модель
🟡Demo


@ai_machinelearning_big_data

#AI #ML #BiRefNet #RMBG #BRIAAI

BY Machine learning Interview







Share with your friend now:
tgoop.com/machinelearning_interview/1357

View MORE
Open in Telegram


Telegram News

Date: |

Telegram message that reads: "Bear Market Screaming Therapy Group. You are only allowed to send screaming voice notes. Everything else = BAN. Text pics, videos, stickers, gif = BAN. Anything other than screaming = BAN. You think you are smart = BAN. Hashtags are a fast way to find the correct information on social media. To put your content out there, be sure to add hashtags to each post. We have two intelligent tips to give you: Telegram Channels requirements & features Telegram channels enable users to broadcast messages to multiple users simultaneously. Like on social media, users need to subscribe to your channel to get access to your content published by one or more administrators. In the next window, choose the type of your channel. If you want your channel to be public, you need to develop a link for it. In the screenshot below, it’s ”/catmarketing.” If your selected link is unavailable, you’ll need to suggest another option.
from us


Telegram Machine learning Interview
FROM American