MACHINELEARNING_INTERVIEW Telegram 1353
Forwarded from Machinelearning
🌟 LLaMA-Mesh: метод генерации 3D-мешей с помощью LLM.

LLaMA-Mesh - метод, разработанный NVIDIA Labs, позволяющий генерировать 3D-модели с помощью текстовых инструкций, используя LLM. В отличие от других методов, LLaMA-Mesh представляет координаты вершин и определения граней 3D-сеток в виде простого текста, что позволяет напрямую интегрировать их с LLM без расширения словаря, минимизируя дополнительные затраты на обучение и позволяя использовать знания, которые уже имеют LLM.

Метод основан на файнтюне LLaMA-3.1-8B-Instruct на специальном наборе данных., который состоит из пар "текст-3D" и интерактивных диалогов, содержащих текст и 3D-модели.

В результате этого обучения, LLaMA-Mesh получает способность генерировать высококачественные 3D-сетки с различной топологией, сопоставимые по качеству с моделями, обученными с нуля, при этом сохраняя языковые способности, обеспечивая понимание сложных инструкций и ведения контекстуально-зависимых диалогов.

Оценка LLaMA-Mesh проводилась на качественных и количественных экспериментах.

Результаты качественных тестов демонстрируют высокую точность, качество и разнообразие сгенерированных 3D-моделей, а также сохраненные языковые возможности модели.

Количественные тесты в бенчмарках MMLU, PIQA, HellaSwag и GSM8K подтвердили сохранение языковых способностей, сравнимые с фундаментальными моделями LLaMA.

⚠️ Код и предварительно обученные веса обещают опубликовать в ближайшее время.


🟡Страница проекта
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #3DGen #LlamaMesh #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
9👍5🔥1



tgoop.com/machinelearning_interview/1353
Create:
Last Update:

🌟 LLaMA-Mesh: метод генерации 3D-мешей с помощью LLM.

LLaMA-Mesh - метод, разработанный NVIDIA Labs, позволяющий генерировать 3D-модели с помощью текстовых инструкций, используя LLM. В отличие от других методов, LLaMA-Mesh представляет координаты вершин и определения граней 3D-сеток в виде простого текста, что позволяет напрямую интегрировать их с LLM без расширения словаря, минимизируя дополнительные затраты на обучение и позволяя использовать знания, которые уже имеют LLM.

Метод основан на файнтюне LLaMA-3.1-8B-Instruct на специальном наборе данных., который состоит из пар "текст-3D" и интерактивных диалогов, содержащих текст и 3D-модели.

В результате этого обучения, LLaMA-Mesh получает способность генерировать высококачественные 3D-сетки с различной топологией, сопоставимые по качеству с моделями, обученными с нуля, при этом сохраняя языковые способности, обеспечивая понимание сложных инструкций и ведения контекстуально-зависимых диалогов.

Оценка LLaMA-Mesh проводилась на качественных и количественных экспериментах.

Результаты качественных тестов демонстрируют высокую точность, качество и разнообразие сгенерированных 3D-моделей, а также сохраненные языковые возможности модели.

Количественные тесты в бенчмарках MMLU, PIQA, HellaSwag и GSM8K подтвердили сохранение языковых способностей, сравнимые с фундаментальными моделями LLaMA.

⚠️ Код и предварительно обученные веса обещают опубликовать в ближайшее время.


🟡Страница проекта
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #3DGen #LlamaMesh #NVIDIA

BY Machine learning Interview






Share with your friend now:
tgoop.com/machinelearning_interview/1353

View MORE
Open in Telegram


Telegram News

Date: |

To delete a channel with over 1,000 subscribers, you need to contact user support Done! Now you’re the proud owner of a Telegram channel. The next step is to set up and customize your channel. More>> Hui said the time period and nature of some offences “overlapped” and thus their prison terms could be served concurrently. The judge ordered Ng to be jailed for a total of six years and six months. 1What is Telegram Channels?
from us


Telegram Machine learning Interview
FROM American