MACHINELEARNING_INTERVIEW Telegram 1281
Forwarded from Machinelearning
🌟 MMSearch: бенчмарк мультимодальных моделей по способности поиска.

MMSearch — это тест мультимодального поиска, созданный для оценки возможностей LMMs как систем для поиска информации. Этот тест включает тщательно отобранный датасет из 300 запросов из 14 различных областей.

Чтобы обеспечить сложность бенчмарка, запросы классифицируются по двум основным категориям: новости и знания.

Область новостей состоит из недавних событий на момент сбора данных (август 2024 года), это гарантирует, что ответы на запросы не будут содержаться в обучающих данных для LMM.

В области знаний собраны запросы, требующие редких знаний - те, на которые не могут ответить современные LMM, такие как GPT-4o и Claude-3.5.

Оценка выполняется по 4 задачам, итог выполнения сравнивается с результатом аннотаторов, в роли которых выступали люди :

🟢запрос (requery): интерпретация запроса о содержимом или об объекте на изображении;

🟢ранжирование (rerank): выбор наиболее релевантного ответа запросу;

🟢обобщение (summarization): анализ результатов задач requery и rerank и формирование ответа на запрос;

🟢сквозной запрос (End-to-End): тест полного цикла, который включает в себя все три задачи сразу (requery+rerank+summarization).

▶️ Локальное выполнение бенчмарка возможно 3 способами:

🟠в VLMEvalKit. Пакет поддерживает более 150 VLM и MMLM моделей;

🟠путем запуска скриптов оценки MMSearch;

🟠в lmms-eval. Пока поддерживается только одна модель для теста MMSearch - LLaVA-OneVision, расширение возможностей - в процессе, настройка среды - тут.

⚠️ Среднее время выполнения самого сложного теста (End-to-End) на одном GPU A100 - 3-5 часов.

Лидерборд MMSearch 16 моделей, включая результат выполнения тестов человеком можно посмотреть на странице проекта.


🟡Страница проекта
🟡Arxiv
🟡Датасет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #MMLM #Benchmark
Please open Telegram to view this post
VIEW IN TELEGRAM
👍92🔥2



tgoop.com/machinelearning_interview/1281
Create:
Last Update:

🌟 MMSearch: бенчмарк мультимодальных моделей по способности поиска.

MMSearch — это тест мультимодального поиска, созданный для оценки возможностей LMMs как систем для поиска информации. Этот тест включает тщательно отобранный датасет из 300 запросов из 14 различных областей.

Чтобы обеспечить сложность бенчмарка, запросы классифицируются по двум основным категориям: новости и знания.

Область новостей состоит из недавних событий на момент сбора данных (август 2024 года), это гарантирует, что ответы на запросы не будут содержаться в обучающих данных для LMM.

В области знаний собраны запросы, требующие редких знаний - те, на которые не могут ответить современные LMM, такие как GPT-4o и Claude-3.5.

Оценка выполняется по 4 задачам, итог выполнения сравнивается с результатом аннотаторов, в роли которых выступали люди :

🟢запрос (requery): интерпретация запроса о содержимом или об объекте на изображении;

🟢ранжирование (rerank): выбор наиболее релевантного ответа запросу;

🟢обобщение (summarization): анализ результатов задач requery и rerank и формирование ответа на запрос;

🟢сквозной запрос (End-to-End): тест полного цикла, который включает в себя все три задачи сразу (requery+rerank+summarization).

▶️ Локальное выполнение бенчмарка возможно 3 способами:

🟠в VLMEvalKit. Пакет поддерживает более 150 VLM и MMLM моделей;

🟠путем запуска скриптов оценки MMSearch;

🟠в lmms-eval. Пока поддерживается только одна модель для теста MMSearch - LLaVA-OneVision, расширение возможностей - в процессе, настройка среды - тут.

⚠️ Среднее время выполнения самого сложного теста (End-to-End) на одном GPU A100 - 3-5 часов.

Лидерборд MMSearch 16 моделей, включая результат выполнения тестов человеком можно посмотреть на странице проекта.


🟡Страница проекта
🟡Arxiv
🟡Датасет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #MMLM #Benchmark

BY Machine learning Interview






Share with your friend now:
tgoop.com/machinelearning_interview/1281

View MORE
Open in Telegram


Telegram News

Date: |

"Doxxing content is forbidden on Telegram and our moderators routinely remove such content from around the world," said a spokesman for the messaging app, Remi Vaughn. The optimal dimension of the avatar on Telegram is 512px by 512px, and it’s recommended to use PNG format to deliver an unpixelated avatar. Your posting frequency depends on the topic of your channel. If you have a news channel, it’s OK to publish new content every day (or even every hour). For other industries, stick with 2-3 large posts a week. Joined by Telegram's representative in Brazil, Alan Campos, Perekopsky noted the platform was unable to cater to some of the TSE requests due to the company's operational setup. But Perekopsky added that these requests could be studied for future implementation. While the character limit is 255, try to fit into 200 characters. This way, users will be able to take in your text fast and efficiently. Reveal the essence of your channel and provide contact information. For example, you can add a bot name, link to your pricing plans, etc.
from us


Telegram Machine learning Interview
FROM American