MACHINELEARNING_INTERVIEW Telegram 1206
Forwarded from Machinelearning
⚡️ Llama 3.1-Nemotron-51B-Instruct: модель от NVIDIA по методу Neural Architecture Search.

Llama 3.1-Nemotron-51B-Instruct основана на Llama 3.1-70B и предназначена для NLP-задач генерации текста, чата, рассуждения и обобщения. Мультиязычность наследована от родительская модель. Llama 3.1-Nemotron-51B-Instruct также умеет обрабатывать языки программирования.

Архитектура модели построена с использованием методологии Neural Architecture Search (NAS) и блочной дистилляции.

NAS позволяет отобрать наиболее эффективные блоки трансформера для каждого слоя модели, а блочная дистилляция обеспечивает перенос знаний от исходной модели Llama 3.1-70B к более компактной Llama 3.1-Nemotron-51B-Instruct.

Полученная архитектура имеет нерегулярную структуру блоков с уменьшенным количеством операций внимания и полносвязных слоев, что существенно снижает вычислительную сложность и объем используемой памяти.

В процессе обучения модели использовались бенчмаркиMT-Bench и MMLU. Тестирование проводилось на задачах генерации текста, перевода и ответов на вопросы.

Результаты показали, что инференс Llama 3.1-Nemotron-51B-Instruct в 2.2 раза быстрее "родительской" модели (Llama 3.1-70B) при сохранении практически той же точности.

Благодаря сниженным требованиям к памяти, модель может обрабатывать в 4 раза большие объемы данных на одном GPU.


▶️Рекомендованные аппаратные конфигурации:

🟠FP8 - H100-80GB (версии FP8 пока нет в открытом доступе);

🟢BF16 - 2x H100-80GB GPU или 2x A100-80GB GPU.

▶️Пример инференса на Transformers (версия 4.44.2 или выше):

import torch
import transformers

model_id = "nvidia/Llama-3_1-Nemotron-51B-Instruct"
model_kwargs = {"torch_dtype": torch.bfloat16, "trust_remote_code": True, "device_map": "auto"}
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token_id = tokenizer.eos_token_id

pipeline = transformers.pipeline(
"text-generation",
model=model_id,
tokenizer=tokenizer,
max_new_tokens=20,
**model_kwargs
)
print(pipeline([{"role": "user", "content": "Hey how are you?"}]))


📌Лицензирование : NVIDIA AI Foundation Models Community License.


🟡Страница проекта
🟡Модель
🟡Demo


@ai_machinelearning_big_data

#AI #ML #LLM #Nemotron
Please open Telegram to view this post
VIEW IN TELEGRAM
👍95🥰1



tgoop.com/machinelearning_interview/1206
Create:
Last Update:

⚡️ Llama 3.1-Nemotron-51B-Instruct: модель от NVIDIA по методу Neural Architecture Search.

Llama 3.1-Nemotron-51B-Instruct основана на Llama 3.1-70B и предназначена для NLP-задач генерации текста, чата, рассуждения и обобщения. Мультиязычность наследована от родительская модель. Llama 3.1-Nemotron-51B-Instruct также умеет обрабатывать языки программирования.

Архитектура модели построена с использованием методологии Neural Architecture Search (NAS) и блочной дистилляции.

NAS позволяет отобрать наиболее эффективные блоки трансформера для каждого слоя модели, а блочная дистилляция обеспечивает перенос знаний от исходной модели Llama 3.1-70B к более компактной Llama 3.1-Nemotron-51B-Instruct.

Полученная архитектура имеет нерегулярную структуру блоков с уменьшенным количеством операций внимания и полносвязных слоев, что существенно снижает вычислительную сложность и объем используемой памяти.

В процессе обучения модели использовались бенчмаркиMT-Bench и MMLU. Тестирование проводилось на задачах генерации текста, перевода и ответов на вопросы.

Результаты показали, что инференс Llama 3.1-Nemotron-51B-Instruct в 2.2 раза быстрее "родительской" модели (Llama 3.1-70B) при сохранении практически той же точности.

Благодаря сниженным требованиям к памяти, модель может обрабатывать в 4 раза большие объемы данных на одном GPU.


▶️Рекомендованные аппаратные конфигурации:

🟠FP8 - H100-80GB (версии FP8 пока нет в открытом доступе);

🟢BF16 - 2x H100-80GB GPU или 2x A100-80GB GPU.

▶️Пример инференса на Transformers (версия 4.44.2 или выше):

import torch
import transformers

model_id = "nvidia/Llama-3_1-Nemotron-51B-Instruct"
model_kwargs = {"torch_dtype": torch.bfloat16, "trust_remote_code": True, "device_map": "auto"}
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token_id = tokenizer.eos_token_id

pipeline = transformers.pipeline(
"text-generation",
model=model_id,
tokenizer=tokenizer,
max_new_tokens=20,
**model_kwargs
)
print(pipeline([{"role": "user", "content": "Hey how are you?"}]))


📌Лицензирование : NVIDIA AI Foundation Models Community License.


🟡Страница проекта
🟡Модель
🟡Demo


@ai_machinelearning_big_data

#AI #ML #LLM #Nemotron

BY Machine learning Interview






Share with your friend now:
tgoop.com/machinelearning_interview/1206

View MORE
Open in Telegram


Telegram News

Date: |

Judge Hui described Ng as inciting others to “commit a massacre” with three posts teaching people to make “toxic chlorine gas bombs,” target police stations, police quarters and the city’s metro stations. This offence was “rather serious,” the court said. Add the logo from your device. Adjust the visible area of your image. Congratulations! Now your Telegram channel has a face Click “Save”.! The group’s featured image is of a Pepe frog yelling, often referred to as the “REEEEEEE” meme. Pepe the Frog was created back in 2005 by Matt Furie and has since become an internet symbol for meme culture and “degen” culture. Ng, who had pleaded not guilty to all charges, had been detained for more than 20 months. His channel was said to have contained around 120 messages and photos that incited others to vandalise pro-government shops and commit criminal damage targeting police stations. To delete a channel with over 1,000 subscribers, you need to contact user support
from us


Telegram Machine learning Interview
FROM American