tgoop.com/machinelearning_books/1220
Last Update:
NVFP4 - новый формат, который обучает 12B Mamba Transformer в 4 бита без потери точности
Исследователи представили NVFP4 - способ хранить числа в 4 битах вместо 8 или 16, почти без потери качества обучения.
Главная идея - умное блочное квантование:
- Все значения делятся на блоки по 16 чисел.
- Каждый блок имеет свой локальный scale (8 бит).
- Весь тензор получает глобальный scale (32 бита).
Так сохраняется высокая точность локальных значений и не теряются экстремально большие или маленькие числа.
📊 Результаты:
- Обучение 12B Mamba Transformer на 10T токенов в 4 битах показало точность, сопоставимую с FP8.
- Вычисления стали в 2–3 раза быстрее, а использование памяти снизилось на 50%.
- Потеря точности не превышает 1–1.5% по метрикам.
- MMLU Pro: 62.58% (NVFP4) против 62.62% (FP8).
- MBPP+: 55.91% против 59.11%.
- Градиенты используют стохастическое округление, чтобы избежать накопления ошибок.
- По сравнению с MXFP4, NVFP4 требует на 36% меньше данных для того же уровня потерь.
На поздних этапах обучения переход на BF16 почти устраняет разрыв в качестве.
NVFP4 уже поддерживается в Transformer Engine и на Blackwell GPU, включая все нужные режимы округления.
📄 Исследование: https://arxiv.org/abs/2509.25149
BY Машиннное обучение | Наука о данных Библиотека

Share with your friend now:
tgoop.com/machinelearning_books/1220
