tgoop.com/machinelearning_books/1191
Last Update:
🚀 Новое исследование: Reinforcement Learning on Pre-training Data (RLPT)
Этот метод решает главную проблему масштабирования LLM — ограниченность размеченного текста.
🌟 RLPT даёт моделям возможность учиться рассуждениям напрямую на данных предобучения, без дорогой ручной разметки.
Как это работает:
1️⃣ Модель во время обучения сама исследует данные и учится более общим стратегиям рассуждений.
2️⃣ Никакой дополнительной разметки — награды извлекаются прямо из предобучающих данных.
3️⃣ Награды за предсказание следующего сегмента позволяют масштабировать RL на этапе предобучения.
Результаты:
✅ На Qwen3-4B-Base прирост: +3.0 (MMLU), +5.1 (MMLU-Pro), +8.1 (GPQA-Diamond), +6.0 (KOR-Bench), +6.6 (AIME24), +5.3 (AIME25).
✅ Чем больше вычислений, тем сильнее рост.
✅ Технология создаёт базу для дальнейших улучшений в RLVR.
📄 Подробнее: https://arxiv.org/pdf/2509.19249
#AI #RLPT #LLM #MachineLearning #NLP
BY Машиннное обучение | Наука о данных Библиотека
Share with your friend now:
tgoop.com/machinelearning_books/1191