tgoop.com/machinelearning_books/1183
Last Update:
Раньше методы улучшали либо построение графа, либо поиск по нему — но не оба сразу. Здесь же оба этапа связаны: они корректируют друг друга и устраняют лишние затраты.
Как это работает:
- Всё начинается со схемы — набора правил с допустимыми типами сущностей, связей и атрибутов. Благодаря этому извлекается только релевантная информация без шума.
- Факты сохраняются в виде триплетов (сущность → связь → сущность). Если новые паттерны повторяются часто, схема расширяется.
- Чтобы граф не разрастался в хаотичную сеть, система группирует связанные узлы в сообщества, формируя 4-уровневое дерево знаний: от атрибутов внизу до сообществ наверху.
- Для запросов агент разбивает вопрос на подзапросы в рамках схемы, применяет разные методы поиска параллельно и корректирует ошибки до получения согласованного ответа.
Главное преимущество: одна и та же схема используется и для извлечения знаний, и для разбора вопросов. Это делает рассуждения чище, снижает расход токенов и повышает точность.
Результаты: на бенчмарках — до 90,7% меньше токенов и +16,6% к точности по сравнению с сильными базовыми методами.
Статья: https://arxiv.org/abs/2508.19855