MACHINELEARNING_BOOKS Telegram 1172
Forwarded from Machinelearning
📕 Свежий гайд от Anthropic: Writing effective tools for agents — with agents

Anthropic описывает, как правильно создавать инструменты (tools) для AI-агентов: так, чтобы они были максимально полезными, эффективными и надёжными. Особый акцент сделан на том, как использовать самих агентов для прототипирования, тестирования и оптимизации инструментов.

Как писать эффективные инструменты для агентов
- Делай быстрые прототипы и сразу проверяй, как агент с ними работает.
- Тестируй на реальных сценариях, а не на абстрактных примерах.
- Анализируй логи и поведение агента, чтобы находить ошибки и непонятные места.
- Избегай дублирования: один инструмент должен выполнять одну чёткую задачу.
- Используй понятные имена и структуры (`machinelearning_create_task`, `mla_list_users`).
- Возвращай только нужные данные, не перегружай ответ лишним. Добавляй фильтрацию и пагинацию.
- Пиши описания так, чтобы их понял даже человек, который не в теме: чётко, без двусмысленностей, с примерами входа и выхода.

Что это дает:

- Улучшает способность AI-агентов решать реальные задачи.
- Минимизирует ошибки: неверное использование инструментов, лишние токены, избыточные вызовы.
- Повышает надёжность и предсказуемость поведения агентов.
- Упрощает масштабирование — добавление новых инструментов и задач.

🟠 Полный гайд: https://www.anthropic.com/engineering/writing-tools-for-agents

@ai_machinelearning_big_data

#Anthropic #claude #aiagents #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
5👍2



tgoop.com/machinelearning_books/1172
Create:
Last Update:

📕 Свежий гайд от Anthropic: Writing effective tools for agents — with agents

Anthropic описывает, как правильно создавать инструменты (tools) для AI-агентов: так, чтобы они были максимально полезными, эффективными и надёжными. Особый акцент сделан на том, как использовать самих агентов для прототипирования, тестирования и оптимизации инструментов.

Как писать эффективные инструменты для агентов
- Делай быстрые прототипы и сразу проверяй, как агент с ними работает.
- Тестируй на реальных сценариях, а не на абстрактных примерах.
- Анализируй логи и поведение агента, чтобы находить ошибки и непонятные места.
- Избегай дублирования: один инструмент должен выполнять одну чёткую задачу.
- Используй понятные имена и структуры (`machinelearning_create_task`, `mla_list_users`).
- Возвращай только нужные данные, не перегружай ответ лишним. Добавляй фильтрацию и пагинацию.
- Пиши описания так, чтобы их понял даже человек, который не в теме: чётко, без двусмысленностей, с примерами входа и выхода.

Что это дает:

- Улучшает способность AI-агентов решать реальные задачи.
- Минимизирует ошибки: неверное использование инструментов, лишние токены, избыточные вызовы.
- Повышает надёжность и предсказуемость поведения агентов.
- Упрощает масштабирование — добавление новых инструментов и задач.

🟠 Полный гайд: https://www.anthropic.com/engineering/writing-tools-for-agents

@ai_machinelearning_big_data

#Anthropic #claude #aiagents #ai

BY Машиннное обучение | Наука о данных Библиотека










Share with your friend now:
tgoop.com/machinelearning_books/1172

View MORE
Open in Telegram


Telegram News

Date: |

Telegram users themselves will be able to flag and report potentially false content. The optimal dimension of the avatar on Telegram is 512px by 512px, and it’s recommended to use PNG format to deliver an unpixelated avatar. Public channels are public to the internet, regardless of whether or not they are subscribed. A public channel is displayed in search results and has a short address (link). The public channel had more than 109,000 subscribers, Judge Hui said. Ng had the power to remove or amend the messages in the channel, but he “allowed them to exist.” Telegram channels enable users to broadcast messages to multiple users simultaneously. Like on social media, users need to subscribe to your channel to get access to your content published by one or more administrators.
from us


Telegram Машиннное обучение | Наука о данных Библиотека
FROM American