🖥 Как выжать максимум из маленькой LLM? Ответ — долго и грамотно учить .NVIDIA показала, как 1.5B-модель можно раскачать до топовых результатов в логике, математике, коду и STEM-задачам —
без увеличения параметров модели.
📈 Результат после месяцев обучения:
+55% к логическим задачам
+14.7% к математике
+13.9% к коду
+25.1% к сложным STEM-вопросам
🛠 Как они это сделали:
– Использовали RL (обучение с подкреплением) на 5 типах задач, включая 40K примеров по математике и 24K по программированию
– Все ответы проверялись автоматически в "песочнице", которая оценивает, правильный ли результат
– Применили улучшенную стратегию обучения — *Group Relative Policy Optimization* — и добавили несколько хитрых трюков:
🟢 Decoupled clipping — обычно модель "обрезает" редкие и неожиданные токены, чтобы не уходить слишком в сторону от главного. Но здесь этот механизм ослаблен: модель может чаще выбирать нестандартные слова, что помогает ей находить неожиданные, но правильные решения.
🟢 Dynamic sampling — модель *не тратит время* на лишком лёгкие задачи. Она пропускает такие примеры и фокусируется на тех, где действительно можно чему-то научиться.
🟢 Маленький KL-штраф (0.0001) — KL показывает, насколько поведение модели отклоняется от старой версии (эталона). Здесь штраф почти нулевой, чтобы не мешать экспериментам, но всё ещё предотвращать полное "сумасшествие" модели.
🟢 Сброс каждые 400 шагов — модель регулярно сбрасывает и policy (поведение), и оптимизатор. Это как регулярная перезагрузка — модель забывает вредные привычки, но сохраняет полезные навыки.
🟢 Температура 1.2 и длинный контекст (8K → 16K) — высокая температура делает поведение модели более разнообразным. А длинный контекст помогает учитывать больше информации при генерации ответа.
Все эти приёмы помогли сохранить интерес модели к поиску новых решений, а не скатываться к заученным паттернам.
Итог: модель не "застывает", а продолжает исследовать — и выдает стабильный рост качества без расширения архитектуры.
📄 Почитать статью полностью :
arxiv.org/abs/2507.12507@ai_machinelearning_big_data#ml #ai #nvidia