MACHINELEARNING_BOOKS Telegram 1109
Forwarded from Machinelearning
🖥 Как выжать максимум из маленькой LLM? Ответ — долго и грамотно учить .

NVIDIA показала, как 1.5B-модель можно раскачать до топовых результатов в логике, математике, коду и STEM-задачам — без увеличения параметров модели.

📈 Результат после месяцев обучения:
+55% к логическим задачам
+14.7% к математике
+13.9% к коду
+25.1% к сложным STEM-вопросам

🛠 Как они это сделали:

– Использовали RL (обучение с подкреплением) на 5 типах задач, включая 40K примеров по математике и 24K по программированию
– Все ответы проверялись автоматически в "песочнице", которая оценивает, правильный ли результат
– Применили улучшенную стратегию обучения — *Group Relative Policy Optimization* — и добавили несколько хитрых трюков:

🟢 Decoupled clipping — обычно модель "обрезает" редкие и неожиданные токены, чтобы не уходить слишком в сторону от главного. Но здесь этот механизм ослаблен: модель может чаще выбирать нестандартные слова, что помогает ей находить неожиданные, но правильные решения.

🟢 Dynamic sampling — модель *не тратит время* на лишком лёгкие задачи. Она пропускает такие примеры и фокусируется на тех, где действительно можно чему-то научиться.

🟢 Маленький KL-штраф (0.0001) — KL показывает, насколько поведение модели отклоняется от старой версии (эталона). Здесь штраф почти нулевой, чтобы не мешать экспериментам, но всё ещё предотвращать полное "сумасшествие" модели.

🟢 Сброс каждые 400 шагов — модель регулярно сбрасывает и policy (поведение), и оптимизатор. Это как регулярная перезагрузка — модель забывает вредные привычки, но сохраняет полезные навыки.

🟢 Температура 1.2 и длинный контекст (8K → 16K) — высокая температура делает поведение модели более разнообразным. А длинный контекст помогает учитывать больше информации при генерации ответа.

Все эти приёмы помогли сохранить интерес модели к поиску новых решений, а не скатываться к заученным паттернам.

Итог: модель не "застывает", а продолжает исследовать — и выдает стабильный рост качества без расширения архитектуры.

📄 Почитать статью полностью : arxiv.org/abs/2507.12507

@ai_machinelearning_big_data

#ml #ai #nvidia
Please open Telegram to view this post
VIEW IN TELEGRAM
6🔥3👍2



tgoop.com/machinelearning_books/1109
Create:
Last Update:

🖥 Как выжать максимум из маленькой LLM? Ответ — долго и грамотно учить .

NVIDIA показала, как 1.5B-модель можно раскачать до топовых результатов в логике, математике, коду и STEM-задачам — без увеличения параметров модели.

📈 Результат после месяцев обучения:
+55% к логическим задачам
+14.7% к математике
+13.9% к коду
+25.1% к сложным STEM-вопросам

🛠 Как они это сделали:

– Использовали RL (обучение с подкреплением) на 5 типах задач, включая 40K примеров по математике и 24K по программированию
– Все ответы проверялись автоматически в "песочнице", которая оценивает, правильный ли результат
– Применили улучшенную стратегию обучения — *Group Relative Policy Optimization* — и добавили несколько хитрых трюков:

🟢 Decoupled clipping — обычно модель "обрезает" редкие и неожиданные токены, чтобы не уходить слишком в сторону от главного. Но здесь этот механизм ослаблен: модель может чаще выбирать нестандартные слова, что помогает ей находить неожиданные, но правильные решения.

🟢 Dynamic sampling — модель *не тратит время* на лишком лёгкие задачи. Она пропускает такие примеры и фокусируется на тех, где действительно можно чему-то научиться.

🟢 Маленький KL-штраф (0.0001) — KL показывает, насколько поведение модели отклоняется от старой версии (эталона). Здесь штраф почти нулевой, чтобы не мешать экспериментам, но всё ещё предотвращать полное "сумасшествие" модели.

🟢 Сброс каждые 400 шагов — модель регулярно сбрасывает и policy (поведение), и оптимизатор. Это как регулярная перезагрузка — модель забывает вредные привычки, но сохраняет полезные навыки.

🟢 Температура 1.2 и длинный контекст (8K → 16K) — высокая температура делает поведение модели более разнообразным. А длинный контекст помогает учитывать больше информации при генерации ответа.

Все эти приёмы помогли сохранить интерес модели к поиску новых решений, а не скатываться к заученным паттернам.

Итог: модель не "застывает", а продолжает исследовать — и выдает стабильный рост качества без расширения архитектуры.

📄 Почитать статью полностью : arxiv.org/abs/2507.12507

@ai_machinelearning_big_data

#ml #ai #nvidia

BY Машиннное обучение | Наука о данных Библиотека




Share with your friend now:
tgoop.com/machinelearning_books/1109

View MORE
Open in Telegram


Telegram News

Date: |

While the character limit is 255, try to fit into 200 characters. This way, users will be able to take in your text fast and efficiently. Reveal the essence of your channel and provide contact information. For example, you can add a bot name, link to your pricing plans, etc. Hui said the messages, which included urging the disruption of airport operations, were attempts to incite followers to make use of poisonous, corrosive or flammable substances to vandalize police vehicles, and also called on others to make weapons to harm police. Select “New Channel” To upload a logo, click the Menu icon and select “Manage Channel.” In a new window, hit the Camera icon.
from us


Telegram Машиннное обучение | Наука о данных Библиотека
FROM American