tgoop.com/mBedLabLearning/60
Last Update:
#هوش_مصنوعی #یادگیری_ماشین
یادگیری تحت نظارت (بخش دوم)
مدل
در یادگیری نظارت شده، یک مدل مجموعه پیچیده ای از اعداد است که رابطه ریاضی را از الگوهای مشخصه ورودی خاص تا مقادیر برچسب خروجی خاص تعریف می کند. مدل از طریق آموزش این الگوها را کشف می کند.
آموزش
قبل از اینکه یک مدل تحت نظارت بتواند پیش بینی کند، باید آموزش داده شود. برای آموزش یک مدل، یک مجموعه داده با نمونه های برچسب دار به مدل می دهیم. هدف این مدل یافتن بهترین راه حل برای پیش بینی برچسب ها از روی ویژگی ها است. مدل با مقایسه مقدار پیش بینی شده خود با مقدار واقعی برچسب بهترین راه حل را پیدا می کند. بر اساس تفاوت بین مقادیر پیش بینی شده و واقعی - که به عنوان ضرر تعریف می شود - مدل به تدریج راه حل خود را به روز می کند. به عبارت دیگر، مدل رابطه ریاضی بین ویژگی ها و برچسب را یاد می گیرد تا بتواند بهترین پیش بینی ها را روی داده های دیده نشده انجام دهد.
برای مثال، اگر مدل 1.15 اینچ باران را پیشبینی کرده بود، اما مقدار واقعی 0.75 اینچ بود، مدل راهحل خود را تغییر میدهد تا پیشبینی آن به 0.75 اینچ نزدیکتر شود. پس از اینکه مدل به هر نمونه در مجموعه داده نگاه کرد - در برخی موارد، چندین بار - به راه حلی می رسد که به طور متوسط بهترین پیش بینی ها را برای هر یک از نمونه ها انجام می دهد.
موارد موجود در پستهای زیر آموزش یک مدل را نشان می دهد:
ادامه در پست بعد...
#برنامه_نویسی #یادگیری_ماشین #هوش_مصنوعی
📍امبدلب به فارسی:
@mBedLabLearning
📍mBedLab in English:
@mBedLabLearningEN
📍mBedLab Türkçe'de
@mBedLabLearningTR
BY mBedLab Learning
Share with your friend now:
tgoop.com/mBedLabLearning/60