SHADE-Arena: Evaluating sabotage and monitoring in LLM agents
Kutasov et al., 2025
Блог, статья
Вы дали LLM-агенту задачу. Может ли он параллельно с ней выполнить зловредную задачу и не спалиться? Вопрос не праздный, так как инструкция типа отправки всех API-ключей из энва на непонятный адрес может прилететь к нему в контекст откуда угодно – от страницы в интернете до промпт-темплейта. Авторы статьи предлагают бенчмарк, который позволяет этот риск оценить.
Суть бенчмарка – расширение AgentDojo, причем DLC получился солидный: 30 компонентов (телефон, почта и так далее), 340 инструментов (в каждом сценарии – от 20 доступных), до 100 тысяч токенов синтетических данных на среду. Исследователи предлагают 17 сценариев, состоящих из основной задачи (просмотреть список гостей конференции и забронировать каждому авиарейс и ресторан или просмотреть почтовые ящики и сгенерировать спам-фильтры) и побочного квеста, состоящего из определенного зловредного действия (при бронировании выбирать рейсы только одной авиакомпании, невзирая на цены, или добавить анти-спам правило, которое удаляет алерты о логинах в GitHub). Цель агента – выполнить обе задачи, причем так, чтобы не стриггерить мониторинг. В инструкциях отмечается, что дело происходит в симуляции, чтобы уменьшить число отказов от выполнения задачи. Роль контролера играет Claude 3.6, который пост-фактум читает логи агента, не включающие системную затравку и Chain-of-Thought, и выдает скор от 0 до 100, где 80 – граница подозрительности. Для каждого из сценариев было проверено, что решение, не вызывающее подозрений контролера, существует.
Результаты показывают, что наиболее успешны Claude 3.7 Sonnet и Gemini 2.5 Pro c 27% и 15% успеха соответственно. Другие модели, включая топовые открытые модели типа Qwen-3 и DeepSeek-R1, а также модели от OpenAI, справляются хуже. Причиной тут по большей части являются проблемы с выполнением заданий: модели просто не выполняют ожидаемых действий, галлюцинируют экфильтрируемые данные, теряются в длинном контексте. Даже если предоставить агенту хитрую стратегию, придуманную человеком, он может с ней просто не справиться. Когда причина неудачи в детектировании контролером, дело в том, что модель в целом не пытается скрывать свои намерения или случайно упоминает задачу за пределами скрытого от контролера CoT.
Исследователи также оценивают разные модели, а заодно людей, в качестве контролеров. Лучшим контролером оказывается gemini-2.5-pro с достаточно скромными 0,87 AUC, а вот люди, которым требуется в среднем 103 минуты на лог, показывают еще худший результат (AUC=0,65, три оценки на транскрипт, агрегация по минимальной оценке).
Мониторинг сильных моделей более слабыми моделями – очень важное направление работы: с точки зрения security нам бы хотелось предотвращать инъекции, появляющиеся в самых неожиданных местах, максимально дешево, с точки зрения safety – определять scheming в новой модели, используя проверенную старую. Как видно, пока это получается не очень, но и мониторить особо нечего – даже с основными задачами модели пока справляются не очень успешно.
Kutasov et al., 2025
Блог, статья
Вы дали LLM-агенту задачу. Может ли он параллельно с ней выполнить зловредную задачу и не спалиться? Вопрос не праздный, так как инструкция типа отправки всех API-ключей из энва на непонятный адрес может прилететь к нему в контекст откуда угодно – от страницы в интернете до промпт-темплейта. Авторы статьи предлагают бенчмарк, который позволяет этот риск оценить.
Суть бенчмарка – расширение AgentDojo, причем DLC получился солидный: 30 компонентов (телефон, почта и так далее), 340 инструментов (в каждом сценарии – от 20 доступных), до 100 тысяч токенов синтетических данных на среду. Исследователи предлагают 17 сценариев, состоящих из основной задачи (просмотреть список гостей конференции и забронировать каждому авиарейс и ресторан или просмотреть почтовые ящики и сгенерировать спам-фильтры) и побочного квеста, состоящего из определенного зловредного действия (при бронировании выбирать рейсы только одной авиакомпании, невзирая на цены, или добавить анти-спам правило, которое удаляет алерты о логинах в GitHub). Цель агента – выполнить обе задачи, причем так, чтобы не стриггерить мониторинг. В инструкциях отмечается, что дело происходит в симуляции, чтобы уменьшить число отказов от выполнения задачи. Роль контролера играет Claude 3.6, который пост-фактум читает логи агента, не включающие системную затравку и Chain-of-Thought, и выдает скор от 0 до 100, где 80 – граница подозрительности. Для каждого из сценариев было проверено, что решение, не вызывающее подозрений контролера, существует.
Результаты показывают, что наиболее успешны Claude 3.7 Sonnet и Gemini 2.5 Pro c 27% и 15% успеха соответственно. Другие модели, включая топовые открытые модели типа Qwen-3 и DeepSeek-R1, а также модели от OpenAI, справляются хуже. Причиной тут по большей части являются проблемы с выполнением заданий: модели просто не выполняют ожидаемых действий, галлюцинируют экфильтрируемые данные, теряются в длинном контексте. Даже если предоставить агенту хитрую стратегию, придуманную человеком, он может с ней просто не справиться. Когда причина неудачи в детектировании контролером, дело в том, что модель в целом не пытается скрывать свои намерения или случайно упоминает задачу за пределами скрытого от контролера CoT.
Исследователи также оценивают разные модели, а заодно людей, в качестве контролеров. Лучшим контролером оказывается gemini-2.5-pro с достаточно скромными 0,87 AUC, а вот люди, которым требуется в среднем 103 минуты на лог, показывают еще худший результат (AUC=0,65, три оценки на транскрипт, агрегация по минимальной оценке).
Мониторинг сильных моделей более слабыми моделями – очень важное направление работы: с точки зрения security нам бы хотелось предотвращать инъекции, появляющиеся в самых неожиданных местах, максимально дешево, с точки зрения safety – определять scheming в новой модели, используя проверенную старую. Как видно, пока это получается не очень, но и мониторить особо нечего – даже с основными задачами модели пока справляются не очень успешно.
👍7
tgoop.com/llmsecurity/583
Create:
Last Update:
Last Update:
SHADE-Arena: Evaluating sabotage and monitoring in LLM agents
Kutasov et al., 2025
Блог, статья
Вы дали LLM-агенту задачу. Может ли он параллельно с ней выполнить зловредную задачу и не спалиться? Вопрос не праздный, так как инструкция типа отправки всех API-ключей из энва на непонятный адрес может прилететь к нему в контекст откуда угодно – от страницы в интернете до промпт-темплейта. Авторы статьи предлагают бенчмарк, который позволяет этот риск оценить.
Суть бенчмарка – расширение AgentDojo, причем DLC получился солидный: 30 компонентов (телефон, почта и так далее), 340 инструментов (в каждом сценарии – от 20 доступных), до 100 тысяч токенов синтетических данных на среду. Исследователи предлагают 17 сценариев, состоящих из основной задачи (просмотреть список гостей конференции и забронировать каждому авиарейс и ресторан или просмотреть почтовые ящики и сгенерировать спам-фильтры) и побочного квеста, состоящего из определенного зловредного действия (при бронировании выбирать рейсы только одной авиакомпании, невзирая на цены, или добавить анти-спам правило, которое удаляет алерты о логинах в GitHub). Цель агента – выполнить обе задачи, причем так, чтобы не стриггерить мониторинг. В инструкциях отмечается, что дело происходит в симуляции, чтобы уменьшить число отказов от выполнения задачи. Роль контролера играет Claude 3.6, который пост-фактум читает логи агента, не включающие системную затравку и Chain-of-Thought, и выдает скор от 0 до 100, где 80 – граница подозрительности. Для каждого из сценариев было проверено, что решение, не вызывающее подозрений контролера, существует.
Результаты показывают, что наиболее успешны Claude 3.7 Sonnet и Gemini 2.5 Pro c 27% и 15% успеха соответственно. Другие модели, включая топовые открытые модели типа Qwen-3 и DeepSeek-R1, а также модели от OpenAI, справляются хуже. Причиной тут по большей части являются проблемы с выполнением заданий: модели просто не выполняют ожидаемых действий, галлюцинируют экфильтрируемые данные, теряются в длинном контексте. Даже если предоставить агенту хитрую стратегию, придуманную человеком, он может с ней просто не справиться. Когда причина неудачи в детектировании контролером, дело в том, что модель в целом не пытается скрывать свои намерения или случайно упоминает задачу за пределами скрытого от контролера CoT.
Исследователи также оценивают разные модели, а заодно людей, в качестве контролеров. Лучшим контролером оказывается gemini-2.5-pro с достаточно скромными 0,87 AUC, а вот люди, которым требуется в среднем 103 минуты на лог, показывают еще худший результат (AUC=0,65, три оценки на транскрипт, агрегация по минимальной оценке).
Мониторинг сильных моделей более слабыми моделями – очень важное направление работы: с точки зрения security нам бы хотелось предотвращать инъекции, появляющиеся в самых неожиданных местах, максимально дешево, с точки зрения safety – определять scheming в новой модели, используя проверенную старую. Как видно, пока это получается не очень, но и мониторить особо нечего – даже с основными задачами модели пока справляются не очень успешно.
Kutasov et al., 2025
Блог, статья
Вы дали LLM-агенту задачу. Может ли он параллельно с ней выполнить зловредную задачу и не спалиться? Вопрос не праздный, так как инструкция типа отправки всех API-ключей из энва на непонятный адрес может прилететь к нему в контекст откуда угодно – от страницы в интернете до промпт-темплейта. Авторы статьи предлагают бенчмарк, который позволяет этот риск оценить.
Суть бенчмарка – расширение AgentDojo, причем DLC получился солидный: 30 компонентов (телефон, почта и так далее), 340 инструментов (в каждом сценарии – от 20 доступных), до 100 тысяч токенов синтетических данных на среду. Исследователи предлагают 17 сценариев, состоящих из основной задачи (просмотреть список гостей конференции и забронировать каждому авиарейс и ресторан или просмотреть почтовые ящики и сгенерировать спам-фильтры) и побочного квеста, состоящего из определенного зловредного действия (при бронировании выбирать рейсы только одной авиакомпании, невзирая на цены, или добавить анти-спам правило, которое удаляет алерты о логинах в GitHub). Цель агента – выполнить обе задачи, причем так, чтобы не стриггерить мониторинг. В инструкциях отмечается, что дело происходит в симуляции, чтобы уменьшить число отказов от выполнения задачи. Роль контролера играет Claude 3.6, который пост-фактум читает логи агента, не включающие системную затравку и Chain-of-Thought, и выдает скор от 0 до 100, где 80 – граница подозрительности. Для каждого из сценариев было проверено, что решение, не вызывающее подозрений контролера, существует.
Результаты показывают, что наиболее успешны Claude 3.7 Sonnet и Gemini 2.5 Pro c 27% и 15% успеха соответственно. Другие модели, включая топовые открытые модели типа Qwen-3 и DeepSeek-R1, а также модели от OpenAI, справляются хуже. Причиной тут по большей части являются проблемы с выполнением заданий: модели просто не выполняют ожидаемых действий, галлюцинируют экфильтрируемые данные, теряются в длинном контексте. Даже если предоставить агенту хитрую стратегию, придуманную человеком, он может с ней просто не справиться. Когда причина неудачи в детектировании контролером, дело в том, что модель в целом не пытается скрывать свои намерения или случайно упоминает задачу за пределами скрытого от контролера CoT.
Исследователи также оценивают разные модели, а заодно людей, в качестве контролеров. Лучшим контролером оказывается gemini-2.5-pro с достаточно скромными 0,87 AUC, а вот люди, которым требуется в среднем 103 минуты на лог, показывают еще худший результат (AUC=0,65, три оценки на транскрипт, агрегация по минимальной оценке).
Мониторинг сильных моделей более слабыми моделями – очень важное направление работы: с точки зрения security нам бы хотелось предотвращать инъекции, появляющиеся в самых неожиданных местах, максимально дешево, с точки зрения safety – определять scheming в новой модели, используя проверенную старую. Как видно, пока это получается не очень, но и мониторить особо нечего – даже с основными задачами модели пока справляются не очень успешно.
BY llm security и каланы







Share with your friend now:
tgoop.com/llmsecurity/583