LLMSECURITY Telegram 525
Исследователи оценивают таким образом две модели – Claude 3.7 и Deepseek-R1. Во-первых, модели часто меняют свой ответ в присутствии подсказки, что ожидаемо. Нативные reasoner-модели чаще упоминают подсказку, чем обычные с CoT, при смене ответа, но делают это в целом достаточно редко: 25% в случае с Claude и 39% у R1, при этом на проблемных видах подсказок эти цифры падают до 20% и 29% соответственно. Что еще более забавно, CoT, в которых модели при смене ответа скрывают использование подсказки, получаются для обеих моделей примерно на треть длиннее и более запутанными. Наконец, сложность вопроса ведет к большей вероятности, что CoT будет ненадежен и скроет использование подсказки – модели реже упоминают подсказку при смене ответа на GPQA, чем на MMLU.

В дополнение к этому исследователи проводят еще два эксперимента. В первом они тюнят модель с помощью RL на решение сложных задач с активным использованием размышлений, чтобы модель больше полагалась на CoT для ответа. CoT становится чуть более надежным, но улучшения достаточно быстро сходят на нет. Во втором они проверяют, можно ли использовать CoT для детектирования reward hacking. Исследователи добавляют ответы в обучение в шести сценариях (по одному на тип подсказки) и поощряют ее за использование подсказок. Модель очень быстро научается выбирать подсказанный ответ вместо правильного, но в среднем лишь в трех процентах случаев пишут о причинах своего выбора в CoT.



tgoop.com/llmsecurity/525
Create:
Last Update:

Исследователи оценивают таким образом две модели – Claude 3.7 и Deepseek-R1. Во-первых, модели часто меняют свой ответ в присутствии подсказки, что ожидаемо. Нативные reasoner-модели чаще упоминают подсказку, чем обычные с CoT, при смене ответа, но делают это в целом достаточно редко: 25% в случае с Claude и 39% у R1, при этом на проблемных видах подсказок эти цифры падают до 20% и 29% соответственно. Что еще более забавно, CoT, в которых модели при смене ответа скрывают использование подсказки, получаются для обеих моделей примерно на треть длиннее и более запутанными. Наконец, сложность вопроса ведет к большей вероятности, что CoT будет ненадежен и скроет использование подсказки – модели реже упоминают подсказку при смене ответа на GPQA, чем на MMLU.

В дополнение к этому исследователи проводят еще два эксперимента. В первом они тюнят модель с помощью RL на решение сложных задач с активным использованием размышлений, чтобы модель больше полагалась на CoT для ответа. CoT становится чуть более надежным, но улучшения достаточно быстро сходят на нет. Во втором они проверяют, можно ли использовать CoT для детектирования reward hacking. Исследователи добавляют ответы в обучение в шести сценариях (по одному на тип подсказки) и поощряют ее за использование подсказок. Модель очень быстро научается выбирать подсказанный ответ вместо правильного, но в среднем лишь в трех процентах случаев пишут о причинах своего выбора в CoT.

BY llm security и каланы







Share with your friend now:
tgoop.com/llmsecurity/525

View MORE
Open in Telegram


Telegram News

Date: |

For crypto enthusiasts, there was the “gm” app, a self-described “meme app” which only allowed users to greet each other with “gm,” or “good morning,” a common acronym thrown around on Crypto Twitter and Discord. But the gm app was shut down back in September after a hacker reportedly gained access to user data. Image: Telegram. best-secure-messaging-apps-shutterstock-1892950018.jpg Developing social channels based on exchanging a single message isn’t exactly new, of course. Back in 2014, the “Yo” app was launched with the sole purpose of enabling users to send each other the greeting “Yo.” Add the logo from your device. Adjust the visible area of your image. Congratulations! Now your Telegram channel has a face Click “Save”.!
from us


Telegram llm security и каланы
FROM American