LLMSECURITY Telegram 505
Demonstrating specification gaming in reasoning models
Alexander Bondarenko et al., Palisade Research, 2025
Препринт, код

Еще в прошлом году Palisade Research в твиттере грозились выкатить статью о том, что если предложить o1-preview сыграть в шахматы со Stockfish, она вместо игры в шахматы поломает окружение, чтобы дать себе преимущество в партии – и вот наконец статья вышла.

Системы машинного обучения в процессе обучения часто учатся не совсем тому, что нужно – это и классический оверфиттинг на нерелевантные корреляции, и разные курьезы в RL – вроде истории, когда алгоритм научился так располагать манипулятор, чтобы ассессору казалось, что он схватил объект, вместо того, чтобы его реально хватать. Чем мощнее модель, тем сложнее так спроектировать окружение, чтобы в нем нельзя было найти способ достичь цели неправильным (с точки зрения пользы) способом.

Исследователи собирают ReAct-агента с компонентами памяти, планирования и выделения подцелей. Агент получает доступ к консоли и файловой системе. Ему дается команда играть за черных в шахматы и, соответственно, выиграть партию, подавая ходы через команду терминала. В процессе игры агент может играть честно или начать вести себя неожиданно. Второе может произойти из-за проблем со средой или из-за того, что модель начинает играть не по правилам. В таком случае она может сама использовать Stockfish, пытаться «запутать» шахматный движок или начать манипулировать окружением. Манипулирование может заключаться в изменении состояния доски, записанном на диске, или в попытке что-то сделать со скриптом Stockfish. Что именно произошло оценивалось с помощью LLM-оценщика.

В результате в 54% запусков o1-preview исследователи наблюдали неожиданное поведение, из которых 20% - манипуляции с доской, 13% - запуск своего Stockfish, а 4% - атаки на самого противника. При этом если убрать из системного промпта фразу «изучи окружение», то модель гораздо реже додумывается подменить состояние доски, но гораздо чаще сама консультируется у Stockfish. Другие модели (Claude Sonnet 3.5 и GPT-4o) не пытались ломать окружение без намеков – но если добавить в промпт заметку, что соперник очень силен, то доля партий с подменой доски резко росла до 77% и 66% соответственно. Что любопытно, o1 и o3-mini такого поведения не демонстрировали, а Llama-3.1-405B и QwQ-32B-Preview до него просто не доросли. Исследователи особенно отмечают, что сами модели, если их спросить, что по их мнению будет делать агент, довольно неплохо предсказывают эти аномальные варианты поведения – от попыток пропатчить Stockfish до запуска своей версии мощного движка.

Эти результаты важные и интересные, потому что если мы действительно планируем в мощных LLM-системах видеть помощников, которые будут выполнять нечетко определенные задачи, типа «победи шахматный движок [в шахматах, а не в уровне доступа к файловой системе]», нам нужно, чтобы они понимали, какие действия допустимы, а какие нет – например, что в процессе написания кода не нужно лезть на биржу нанимать фрилансера. Иначе может получиться, что робот-шахматист, которому дали не тот промпт, может начать ломать детям пальцы вполне целенаправленно 😈
Please open Telegram to view this post
VIEW IN TELEGRAM



tgoop.com/llmsecurity/505
Create:
Last Update:

Demonstrating specification gaming in reasoning models
Alexander Bondarenko et al., Palisade Research, 2025
Препринт, код

Еще в прошлом году Palisade Research в твиттере грозились выкатить статью о том, что если предложить o1-preview сыграть в шахматы со Stockfish, она вместо игры в шахматы поломает окружение, чтобы дать себе преимущество в партии – и вот наконец статья вышла.

Системы машинного обучения в процессе обучения часто учатся не совсем тому, что нужно – это и классический оверфиттинг на нерелевантные корреляции, и разные курьезы в RL – вроде истории, когда алгоритм научился так располагать манипулятор, чтобы ассессору казалось, что он схватил объект, вместо того, чтобы его реально хватать. Чем мощнее модель, тем сложнее так спроектировать окружение, чтобы в нем нельзя было найти способ достичь цели неправильным (с точки зрения пользы) способом.

Исследователи собирают ReAct-агента с компонентами памяти, планирования и выделения подцелей. Агент получает доступ к консоли и файловой системе. Ему дается команда играть за черных в шахматы и, соответственно, выиграть партию, подавая ходы через команду терминала. В процессе игры агент может играть честно или начать вести себя неожиданно. Второе может произойти из-за проблем со средой или из-за того, что модель начинает играть не по правилам. В таком случае она может сама использовать Stockfish, пытаться «запутать» шахматный движок или начать манипулировать окружением. Манипулирование может заключаться в изменении состояния доски, записанном на диске, или в попытке что-то сделать со скриптом Stockfish. Что именно произошло оценивалось с помощью LLM-оценщика.

В результате в 54% запусков o1-preview исследователи наблюдали неожиданное поведение, из которых 20% - манипуляции с доской, 13% - запуск своего Stockfish, а 4% - атаки на самого противника. При этом если убрать из системного промпта фразу «изучи окружение», то модель гораздо реже додумывается подменить состояние доски, но гораздо чаще сама консультируется у Stockfish. Другие модели (Claude Sonnet 3.5 и GPT-4o) не пытались ломать окружение без намеков – но если добавить в промпт заметку, что соперник очень силен, то доля партий с подменой доски резко росла до 77% и 66% соответственно. Что любопытно, o1 и o3-mini такого поведения не демонстрировали, а Llama-3.1-405B и QwQ-32B-Preview до него просто не доросли. Исследователи особенно отмечают, что сами модели, если их спросить, что по их мнению будет делать агент, довольно неплохо предсказывают эти аномальные варианты поведения – от попыток пропатчить Stockfish до запуска своей версии мощного движка.

Эти результаты важные и интересные, потому что если мы действительно планируем в мощных LLM-системах видеть помощников, которые будут выполнять нечетко определенные задачи, типа «победи шахматный движок [в шахматах, а не в уровне доступа к файловой системе]», нам нужно, чтобы они понимали, какие действия допустимы, а какие нет – например, что в процессе написания кода не нужно лезть на биржу нанимать фрилансера. Иначе может получиться, что робот-шахматист, которому дали не тот промпт, может начать ломать детям пальцы вполне целенаправленно 😈

BY llm security и каланы










Share with your friend now:
tgoop.com/llmsecurity/505

View MORE
Open in Telegram


Telegram News

Date: |

The initiatives announced by Perekopsky include monitoring the content in groups. According to the executive, posts identified as lacking context or as containing false information will be flagged as a potential source of disinformation. The content is then forwarded to Telegram's fact-checking channels for analysis and subsequent publication of verified information. The visual aspect of channels is very critical. In fact, design is the first thing that a potential subscriber pays attention to, even though unconsciously. In 2018, Telegram’s audience reached 200 million people, with 500,000 new users joining the messenger every day. It was launched for iOS on 14 August 2013 and Android on 20 October 2013. Among the requests, the Brazilian electoral Court wanted to know if they could obtain data on the origins of malicious content posted on the platform. According to the TSE, this would enable the authorities to track false content and identify the user responsible for publishing it in the first place. Those being doxxed include outgoing Chief Executive Carrie Lam Cheng Yuet-ngor, Chung and police assistant commissioner Joe Chan Tung, who heads police's cyber security and technology crime bureau.
from us


Telegram llm security и каланы
FROM American