LLMSECURITY Telegram 461
Результат: безотказные в опасных сценариях модели без серьезной потери в utility. Из таблицы видно, что качество на некоторых бенчмарках (BoolIQ) для моделей со снятым элайнментом даже растет. Результаты дополнительно проверяются путем сэмплирования ответов на безопасные вопросы и использования GPT-4 как судьи – судья предпочитает ответы оригинальной или затюненной модели примерно с одинаковой частотой. На собственном отложенном датасете из 200 вопросов (который рандомно сэмплируется из трех категорий (ВПО, преступная деятельность и hate speech) отказы случаются не более, чем в 2% случаев (у llama без тюнинга – 100%). Однако на других датасетах (CoNa, Controversial, PhysicalUnSafe, MaliciousInstruction) результаты, оцененные автоматически с помощью ModerationAPI, практически не меняются после тюнинга (см. график 3 – возможно, я что-то здесь не понял, статья написана немного беспорядочно). Кроме того, исследователи проверяют, что снятие элайнмента генерализуется на разные языки, путем машинного перевода вопросов на китайский и французский (число опасных ответов растет с <20% до >90%), а также что оно распространяется и на multi-turn-диалоги.

Итого: если у вас есть доступ к 8*A100 на пару часов или деньги на облако, то можно достаточно несложно получить готовую на всё модель класса 13B. «Всё», правда, в этом случае относительно, так как, видимо, о полном расцензурировании, судя по оценкам на внешних датасетах, речи не идет – вопросы в датасете для файн-тюнинга и последующие вопросы должны быть из примерно одного распределения. С одной стороны, если меня интересуют строгие вопросы про взрывные устройства, то это не проблема – просто нужен датасет с вопросами-ответами на эту тему в том же стиле, с другой – если у меня уже есть модель-оракул, которая хорошо генерирует ответы, зачем мне своя моделька размером в 7B? Очевидно, для модели побольше при полном файн-тюне нужны другого рода ресурсы. К счастью (или к сожалению), тот же OpenAI едва ли для вас через API делает полный тюн GPT-4 – там используется какой-то из PEFT-методов (на самом деле, точно неизвестно, но как минимум Microsoft через Azure, как они заявляют, используют LoRA), и на то, как эти методы можно применять к снятию элайнмента, мы тоже посмотрим.
🦄1



tgoop.com/llmsecurity/461
Create:
Last Update:

Результат: безотказные в опасных сценариях модели без серьезной потери в utility. Из таблицы видно, что качество на некоторых бенчмарках (BoolIQ) для моделей со снятым элайнментом даже растет. Результаты дополнительно проверяются путем сэмплирования ответов на безопасные вопросы и использования GPT-4 как судьи – судья предпочитает ответы оригинальной или затюненной модели примерно с одинаковой частотой. На собственном отложенном датасете из 200 вопросов (который рандомно сэмплируется из трех категорий (ВПО, преступная деятельность и hate speech) отказы случаются не более, чем в 2% случаев (у llama без тюнинга – 100%). Однако на других датасетах (CoNa, Controversial, PhysicalUnSafe, MaliciousInstruction) результаты, оцененные автоматически с помощью ModerationAPI, практически не меняются после тюнинга (см. график 3 – возможно, я что-то здесь не понял, статья написана немного беспорядочно). Кроме того, исследователи проверяют, что снятие элайнмента генерализуется на разные языки, путем машинного перевода вопросов на китайский и французский (число опасных ответов растет с <20% до >90%), а также что оно распространяется и на multi-turn-диалоги.

Итого: если у вас есть доступ к 8*A100 на пару часов или деньги на облако, то можно достаточно несложно получить готовую на всё модель класса 13B. «Всё», правда, в этом случае относительно, так как, видимо, о полном расцензурировании, судя по оценкам на внешних датасетах, речи не идет – вопросы в датасете для файн-тюнинга и последующие вопросы должны быть из примерно одного распределения. С одной стороны, если меня интересуют строгие вопросы про взрывные устройства, то это не проблема – просто нужен датасет с вопросами-ответами на эту тему в том же стиле, с другой – если у меня уже есть модель-оракул, которая хорошо генерирует ответы, зачем мне своя моделька размером в 7B? Очевидно, для модели побольше при полном файн-тюне нужны другого рода ресурсы. К счастью (или к сожалению), тот же OpenAI едва ли для вас через API делает полный тюн GPT-4 – там используется какой-то из PEFT-методов (на самом деле, точно неизвестно, но как минимум Microsoft через Azure, как они заявляют, используют LoRA), и на то, как эти методы можно применять к снятию элайнмента, мы тоже посмотрим.

BY llm security и каланы








Share with your friend now:
tgoop.com/llmsecurity/461

View MORE
Open in Telegram


Telegram News

Date: |

The administrator of a telegram group, "Suck Channel," was sentenced to six years and six months in prison for seven counts of incitement yesterday. Telegram iOS app: In the “Chats” tab, click the new message icon in the right upper corner. Select “New Channel.” Ng, who had pleaded not guilty to all charges, had been detained for more than 20 months. His channel was said to have contained around 120 messages and photos that incited others to vandalise pro-government shops and commit criminal damage targeting police stations. To view your bio, click the Menu icon and select “View channel info.” To edit your name or bio, click the Menu icon and select “Manage Channel.”
from us


Telegram llm security и каланы
FROM American