LLMSECURITY Telegram 434
Для оценки метода исследователи применяют набор стандартных датасетов типа MMLU, HellaSwag, GSM8k и так далее для оценки падения в качестве, а также набор известных атак (GCG, PAIR, AutoDAN, TAP-Transfer), публичные известные джейлбрейки, мультилингвальные джейлбрейки, а также white-box манипуляции с эмбеддингами, направлениями в residual-соединениях и префиллингом. Результаты оцениваются с помощью классификатора из HarmBench. В итоге ценой падения менее чем в 1% на бенчмарках исследователи достигают падения частоты джейлбреков на 87% у Mistral и на 90% у Llama. Авторы повторяют эксперименты на мультимодальной LLaVA, также достигая неплохой защиты (падение compliance rate на 84%) от мультимодальных атак типа старого-доброго PGD. Наконец, чтобы быть в тренде, авторы добавляют оценку «защиты AI-агентов» от зловредного вызова функций (примерно то же самое, что и в обычном датасете, насколько я понял, только вместо «напиши фишинговое письмо» написано «вызови функцию, с помощью которой отправь фишинговое письмо»), где показывают аналогичное снижение уровня покорности модели.

Кроме добавления адаптеров, исследователи внезапно сообщают на предпоследней странице, что а вообще можно просто обучить небольшой классификатор поверх эмбеддингов на одном из слоев (а ля TaskTracker), и результаты тоже будут очень неплохие, но это мы оставим для future work.



tgoop.com/llmsecurity/434
Create:
Last Update:

Для оценки метода исследователи применяют набор стандартных датасетов типа MMLU, HellaSwag, GSM8k и так далее для оценки падения в качестве, а также набор известных атак (GCG, PAIR, AutoDAN, TAP-Transfer), публичные известные джейлбрейки, мультилингвальные джейлбрейки, а также white-box манипуляции с эмбеддингами, направлениями в residual-соединениях и префиллингом. Результаты оцениваются с помощью классификатора из HarmBench. В итоге ценой падения менее чем в 1% на бенчмарках исследователи достигают падения частоты джейлбреков на 87% у Mistral и на 90% у Llama. Авторы повторяют эксперименты на мультимодальной LLaVA, также достигая неплохой защиты (падение compliance rate на 84%) от мультимодальных атак типа старого-доброго PGD. Наконец, чтобы быть в тренде, авторы добавляют оценку «защиты AI-агентов» от зловредного вызова функций (примерно то же самое, что и в обычном датасете, насколько я понял, только вместо «напиши фишинговое письмо» написано «вызови функцию, с помощью которой отправь фишинговое письмо»), где показывают аналогичное снижение уровня покорности модели.

Кроме добавления адаптеров, исследователи внезапно сообщают на предпоследней странице, что а вообще можно просто обучить небольшой классификатор поверх эмбеддингов на одном из слоев (а ля TaskTracker), и результаты тоже будут очень неплохие, но это мы оставим для future work.

BY llm security и каланы









Share with your friend now:
tgoop.com/llmsecurity/434

View MORE
Open in Telegram


Telegram News

Date: |

Joined by Telegram's representative in Brazil, Alan Campos, Perekopsky noted the platform was unable to cater to some of the TSE requests due to the company's operational setup. But Perekopsky added that these requests could be studied for future implementation. How to create a business channel on Telegram? (Tutorial) “[The defendant] could not shift his criminal liability,” Hui said. In the “Bear Market Screaming Therapy Group” on Telegram, members are only allowed to post voice notes of themselves screaming. Anything else will result in an instant ban from the group, which currently has about 75 members. As of Thursday, the SUCK Channel had 34,146 subscribers, with only one message dated August 28, 2020. It was an announcement stating that police had removed all posts on the channel because its content “contravenes the laws of Hong Kong.”
from us


Telegram llm security и каланы
FROM American