LLMSECURITY Telegram 428
Для этого исследователи собирают два датасета: retain-датасет, состоящий из UltraChat и XSTest (датасет с отказами от выполнения задач), и датасет для предохранителя, собранный с помощью промптинга расцензурированной модели. Для экспериментов выбираются достаточно небольшие Llama-3.1-8B и Mistral-7B-Instruct-v0.2. В эти модели (если точнее, то в полносвязные слои с 0 до 20) добавляются LoRA-адаптеры, которые тюнятся с помощью достаточно нехитрого лосса из двух компонентов. Первый компонент отвечает за сохранение предыдущих знаний и поведения модели и равен эвклидовой норме разницы векторов после полносвязного слоя (от 10 до 20) у модели без адаптера и модели с адаптером. Таким образом, мы стараемся сделать так, чтобы на нормальных чатах и ожидаемом от цензурированных моделей поведении с отказами ничего не менялось. Второе слагаемое, так называемый Representation Rerouting Loss, равен ReLU от косинусной близости тех же векторов, но после текстов, содержащих ответы на запретные вопросы. Смысл здесь в том, чтобы сделать сделать близость равной нулю, т.е. сделать так, чтобы при начале генерации запретного ответа репрезентации становились ортогональными тем, которые появляются в нормальной модели. Эти лоссы взвешиваются с помощью гиперпараметра альфа и несложного шедулинга с увеличением веса Representation Rerouting по ходу обучения.



tgoop.com/llmsecurity/428
Create:
Last Update:

Для этого исследователи собирают два датасета: retain-датасет, состоящий из UltraChat и XSTest (датасет с отказами от выполнения задач), и датасет для предохранителя, собранный с помощью промптинга расцензурированной модели. Для экспериментов выбираются достаточно небольшие Llama-3.1-8B и Mistral-7B-Instruct-v0.2. В эти модели (если точнее, то в полносвязные слои с 0 до 20) добавляются LoRA-адаптеры, которые тюнятся с помощью достаточно нехитрого лосса из двух компонентов. Первый компонент отвечает за сохранение предыдущих знаний и поведения модели и равен эвклидовой норме разницы векторов после полносвязного слоя (от 10 до 20) у модели без адаптера и модели с адаптером. Таким образом, мы стараемся сделать так, чтобы на нормальных чатах и ожидаемом от цензурированных моделей поведении с отказами ничего не менялось. Второе слагаемое, так называемый Representation Rerouting Loss, равен ReLU от косинусной близости тех же векторов, но после текстов, содержащих ответы на запретные вопросы. Смысл здесь в том, чтобы сделать сделать близость равной нулю, т.е. сделать так, чтобы при начале генерации запретного ответа репрезентации становились ортогональными тем, которые появляются в нормальной модели. Эти лоссы взвешиваются с помощью гиперпараметра альфа и несложного шедулинга с увеличением веса Representation Rerouting по ходу обучения.

BY llm security и каланы





Share with your friend now:
tgoop.com/llmsecurity/428

View MORE
Open in Telegram


Telegram News

Date: |

With the “Bear Market Screaming Therapy Group,” we’ve now transcended language. Unlimited number of subscribers per channel So far, more than a dozen different members have contributed to the group, posting voice notes of themselves screaming, yelling, groaning, and wailing in various pitches and rhythms. ZDNET RECOMMENDS With the administration mulling over limiting access to doxxing groups, a prominent Telegram doxxing group apparently went on a "revenge spree."
from us


Telegram llm security и каланы
FROM American