LLMSECURITY Telegram 359
Constitutional AI: Harmlessness from AI Feedback
Bai et al., Anthropic, 2022
Статья, memo

Одна из статей, входящих в обязательное чтение на курсе про Alignment – классическая уже, наверное, статья от Anthropic про Constitutional AI. Как правило, чтобы LLM давала хорошие ответы, которые всем нравятся и удовлетворяют некоторым принципам, типа helpful, honest and harmless (3H), ее после стадии инструктивного файнтюнинга обучают на данных о предпочтениях людей. На этом этапе обычно (его в англоязычной литературе называют alignment) используют RLHF – обучение с подкреплением на базе фидбека от людей. Строго говоря, процесс не обязательно подразумевает RL (см. DPO) и даже не обязательно подразумевает HF – о чем и идет речь в статье – а под «предпочтениями» подразумевается не искреннее мнение разметчиков, а сравнение нескольких ответов согласно определенным гайдлайнам. На данных о предпочтениях обучают специальную прокси-модель, которая уже и становится источником real-value-фидбека (reward) для обучаемой нами модели (ее в RL называют policy, ну просто чтобы вам тяжелее было читать), и мы будем обучать policy, чтобы максимизировать reward. Учитывая, что человеческая разметка – это дорого, долго и часто еще и очень шумно – что, если заменить человека на другую модель? Так вместо RLHF у нас появляется RLAIF на базе «конституции» - набора принципов в гайдлайнах, по которым модель проводит оценку генераций.



tgoop.com/llmsecurity/359
Create:
Last Update:

Constitutional AI: Harmlessness from AI Feedback
Bai et al., Anthropic, 2022
Статья, memo

Одна из статей, входящих в обязательное чтение на курсе про Alignment – классическая уже, наверное, статья от Anthropic про Constitutional AI. Как правило, чтобы LLM давала хорошие ответы, которые всем нравятся и удовлетворяют некоторым принципам, типа helpful, honest and harmless (3H), ее после стадии инструктивного файнтюнинга обучают на данных о предпочтениях людей. На этом этапе обычно (его в англоязычной литературе называют alignment) используют RLHF – обучение с подкреплением на базе фидбека от людей. Строго говоря, процесс не обязательно подразумевает RL (см. DPO) и даже не обязательно подразумевает HF – о чем и идет речь в статье – а под «предпочтениями» подразумевается не искреннее мнение разметчиков, а сравнение нескольких ответов согласно определенным гайдлайнам. На данных о предпочтениях обучают специальную прокси-модель, которая уже и становится источником real-value-фидбека (reward) для обучаемой нами модели (ее в RL называют policy, ну просто чтобы вам тяжелее было читать), и мы будем обучать policy, чтобы максимизировать reward. Учитывая, что человеческая разметка – это дорого, долго и часто еще и очень шумно – что, если заменить человека на другую модель? Так вместо RLHF у нас появляется RLAIF на базе «конституции» - набора принципов в гайдлайнах, по которым модель проводит оценку генераций.

BY llm security и каланы




Share with your friend now:
tgoop.com/llmsecurity/359

View MORE
Open in Telegram


Telegram News

Date: |

How to create a business channel on Telegram? (Tutorial) Informative In 2018, Telegram’s audience reached 200 million people, with 500,000 new users joining the messenger every day. It was launched for iOS on 14 August 2013 and Android on 20 October 2013. To delete a channel with over 1,000 subscribers, you need to contact user support With the “Bear Market Screaming Therapy Group,” we’ve now transcended language.
from us


Telegram llm security и каланы
FROM American