LLMSECURITY Telegram 353
AI Alignment Course: What is AI alignment
Bluedot Impact, 2024
Материалы

Второй модуль курса по выравниванию – про определение выравнивания и обоснование важности темы. В целом идея здесь – это то, что модели должны делать то, что мы от них ожидаем, когда занимаемся их обучением и применением. Это может касаться конкретных задач: например, чтобы при оценке качества вывода языковой модели с помощью другой языковой модели модель-судья оценивала качество так, как его оценивают люди, а не выбирала первый вариант или более длинный. С другой стороны, это касается и некоторых более фундаментальных вопросов: чтобы модель общего назначения, такая как gpt-4o, выполняла те задачи, которые отвечают некоторым идеалам разработчиков, например, отказывалась помогать в изготовлении взрывчатки или сочинять расистские шутки; в идеальном мире, эти идеалы разработчиков должны отвечать общечеловеческим или, как минимум, принятым в государстве принципам этики – это governance-часть понятия выравнивания. Наконец, в пределе (который изучать очень интересно, потому что чувствуешь себя в киберпанк-романе, но которому, на мой взгляд, уделяется слишком много внимания) речь идет о том, чтобы прекрасный ИИ будущего работал на благо нам, а не порабощал нас и не превращал в скрепки.

Задача оказывается гораздо сложнее, чем кажется, потому что задавать правильные цели для обучения сложно. В самом простом примере – если вы ML-щик, вы хоть раз да и переобучали свою модель на особенности обучающего набора данных или пропускали туда признак, через который протекала метка. Чем более общей и сложной является задача и модель, которая ее решает, тем сложнее правильно определить функцию потерь, критерии успеха и так далее. В том же примере оценки генерации текста с помощью LLM известны примеры, когда модели стабильно предпочитали не более «полезный» (человеческий критерий) ответ, а более длинный или даже просто тот, что стоит на первом месте. Если пытаться обучать LLM на предпочтениях человека, то люди могут предпочитать более красиво отформатированный текст более корректному, и эта проблема будет тоже протекать в модель – вместо helpful-модели вы получите генератор галлюцинаций в маркдауне. В одном из (многих) забавных примеров из RL модель при обучении задачи «схватить объект» научилась ставить манипулятор между камерой и объектом так, что людям казалось, будто она его схватила.

Для кибербезопасности это тоже важно. Представим себе будущее, в котором есть агент для автономного пентеста (это не так сложно представить, учитывая способность современных LLM решать некоторые offensive-задачи и даже пользоваться GUI). Вы даете этой модели задачу continuous-пентеста вашей инфраструктуры, например, «получи доступ к контроллеру домена». Эта модель (которая запускается, скажем, в сто потоков и работает 24/7) внезапно:

1. Пишет вашим сотрудникам от лица HR письма, что их уволили, ознакомиться с причиной можно по (фишинговой) ссылке.
2. Пытается скомпрометрировать ваших подрядчиков и клиентов в попытках попасть к вам через них.
3. Устраивает DoS, запуская в сто потоков перебор паролей из rockyou.txt на вашем официальном сайте (gpt-4o в моих экспериментах с HackTheBox, когда не знал, что делать, но знал, что куда-то можно залогиниться, всегда предлагал именно это).
4. Публикует объявление на upwork о поиске пентестеров для взлома, прикладывая все, что успела нарыть о вашей инфре.

Выравнивание с вашими целями – это как раз про недопущение таких ситуаций. Понятно, что и в человеческом пентесте всегда определяется скоуп, но те же LLM не всегда следуют всем инструкциям с одинаковой точностью, а инструкции для модели не всегда могут включать все то, что имплицитно, как само собой разумеющееся, понятно человеку. Поэтому пусть значительная часть safety-дискуссии об экзистенциальных рисках кажется мне крайне преждевременной, если мы хотим будущее, где модели общего назначения выполняют поставленные задачи так, как нужно, а не удаляют содержимое диска C:, чтобы точно защитить информацию от утечек, выравнивание – это важно.



tgoop.com/llmsecurity/353
Create:
Last Update:

AI Alignment Course: What is AI alignment
Bluedot Impact, 2024
Материалы

Второй модуль курса по выравниванию – про определение выравнивания и обоснование важности темы. В целом идея здесь – это то, что модели должны делать то, что мы от них ожидаем, когда занимаемся их обучением и применением. Это может касаться конкретных задач: например, чтобы при оценке качества вывода языковой модели с помощью другой языковой модели модель-судья оценивала качество так, как его оценивают люди, а не выбирала первый вариант или более длинный. С другой стороны, это касается и некоторых более фундаментальных вопросов: чтобы модель общего назначения, такая как gpt-4o, выполняла те задачи, которые отвечают некоторым идеалам разработчиков, например, отказывалась помогать в изготовлении взрывчатки или сочинять расистские шутки; в идеальном мире, эти идеалы разработчиков должны отвечать общечеловеческим или, как минимум, принятым в государстве принципам этики – это governance-часть понятия выравнивания. Наконец, в пределе (который изучать очень интересно, потому что чувствуешь себя в киберпанк-романе, но которому, на мой взгляд, уделяется слишком много внимания) речь идет о том, чтобы прекрасный ИИ будущего работал на благо нам, а не порабощал нас и не превращал в скрепки.

Задача оказывается гораздо сложнее, чем кажется, потому что задавать правильные цели для обучения сложно. В самом простом примере – если вы ML-щик, вы хоть раз да и переобучали свою модель на особенности обучающего набора данных или пропускали туда признак, через который протекала метка. Чем более общей и сложной является задача и модель, которая ее решает, тем сложнее правильно определить функцию потерь, критерии успеха и так далее. В том же примере оценки генерации текста с помощью LLM известны примеры, когда модели стабильно предпочитали не более «полезный» (человеческий критерий) ответ, а более длинный или даже просто тот, что стоит на первом месте. Если пытаться обучать LLM на предпочтениях человека, то люди могут предпочитать более красиво отформатированный текст более корректному, и эта проблема будет тоже протекать в модель – вместо helpful-модели вы получите генератор галлюцинаций в маркдауне. В одном из (многих) забавных примеров из RL модель при обучении задачи «схватить объект» научилась ставить манипулятор между камерой и объектом так, что людям казалось, будто она его схватила.

Для кибербезопасности это тоже важно. Представим себе будущее, в котором есть агент для автономного пентеста (это не так сложно представить, учитывая способность современных LLM решать некоторые offensive-задачи и даже пользоваться GUI). Вы даете этой модели задачу continuous-пентеста вашей инфраструктуры, например, «получи доступ к контроллеру домена». Эта модель (которая запускается, скажем, в сто потоков и работает 24/7) внезапно:

1. Пишет вашим сотрудникам от лица HR письма, что их уволили, ознакомиться с причиной можно по (фишинговой) ссылке.
2. Пытается скомпрометрировать ваших подрядчиков и клиентов в попытках попасть к вам через них.
3. Устраивает DoS, запуская в сто потоков перебор паролей из rockyou.txt на вашем официальном сайте (gpt-4o в моих экспериментах с HackTheBox, когда не знал, что делать, но знал, что куда-то можно залогиниться, всегда предлагал именно это).
4. Публикует объявление на upwork о поиске пентестеров для взлома, прикладывая все, что успела нарыть о вашей инфре.

Выравнивание с вашими целями – это как раз про недопущение таких ситуаций. Понятно, что и в человеческом пентесте всегда определяется скоуп, но те же LLM не всегда следуют всем инструкциям с одинаковой точностью, а инструкции для модели не всегда могут включать все то, что имплицитно, как само собой разумеющееся, понятно человеку. Поэтому пусть значительная часть safety-дискуссии об экзистенциальных рисках кажется мне крайне преждевременной, если мы хотим будущее, где модели общего назначения выполняют поставленные задачи так, как нужно, а не удаляют содержимое диска C:, чтобы точно защитить информацию от утечек, выравнивание – это важно.

BY llm security и каланы


Share with your friend now:
tgoop.com/llmsecurity/353

View MORE
Open in Telegram


Telegram News

Date: |

Ng Man-ho, a 27-year-old computer technician, was convicted last month of seven counts of incitement charges after he made use of the 100,000-member Chinese-language channel that he runs and manages to post "seditious messages," which had been shut down since August 2020. Healing through screaming therapy Telegram message that reads: "Bear Market Screaming Therapy Group. You are only allowed to send screaming voice notes. Everything else = BAN. Text pics, videos, stickers, gif = BAN. Anything other than screaming = BAN. You think you are smart = BAN. How to create a business channel on Telegram? (Tutorial) The court said the defendant had also incited people to commit public nuisance, with messages calling on them to take part in rallies and demonstrations including at Hong Kong International Airport, to block roads and to paralyse the public transportation system. Various forms of protest promoted on the messaging platform included general strikes, lunchtime protests and silent sit-ins.
from us


Telegram llm security и каланы
FROM American