Warning: file_put_contents(aCache/aDaily/post/llmsecurity/-241-242-243-): Failed to open stream: No space left on device in /var/www/tgoop/post.php on line 50
llm security и каланы@llmsecurity P.242
LLMSECURITY Telegram 242
Дальше исследователи дают себе волю и начинают учить модели, да так, что обои от стен отклеиваются. Запрос и ответ по отдельности прогоняются через некоторую предобученную модель для получения эмбеддингов (multilingual-e5-large-instruct). Затем эти эмбеддинги конкатенируются. Из сконкатенированных пар эмбеддингов для разных запросов и ответов собираются приложения, которые вместе со служебным токеном подаются в легковесную сеточку из нескольких слоев трансформера (без позиционных эмбеддингов, т.к. порядок запросов не важен). Кроме того, исследователи обучают эту же сеть как сиамскую с контрастивной функцией потерь для того, чтобы получать отпечатки ответов сервиса, независимые от известных на данный момент архитектур, и потенциально расширять эту модель на работу с не вошедшими в обучающий набор сетями.

Все это обучается на ответах 40 LLM (из топов HuggingFace Hub по скачиваниям), использованных в разных контекстах: с разными системными промптами, параметрами сэмплирования и даже с использованием RAG и CoT – в итоге в 1000 различных комбинациях. В итоге supervised-модель дает точность в 95% (неплохо для 40 классов). Наибольшие трудности модели доставляют файнтюны Llama, что в целом ожидаемо. Контрастивная модель выдает точность в 90% на LLM, которые она видела, и 81% на неизвестных (посчитано с помощью leave-one-out-метода).



tgoop.com/llmsecurity/242
Create:
Last Update:

Дальше исследователи дают себе волю и начинают учить модели, да так, что обои от стен отклеиваются. Запрос и ответ по отдельности прогоняются через некоторую предобученную модель для получения эмбеддингов (multilingual-e5-large-instruct). Затем эти эмбеддинги конкатенируются. Из сконкатенированных пар эмбеддингов для разных запросов и ответов собираются приложения, которые вместе со служебным токеном подаются в легковесную сеточку из нескольких слоев трансформера (без позиционных эмбеддингов, т.к. порядок запросов не важен). Кроме того, исследователи обучают эту же сеть как сиамскую с контрастивной функцией потерь для того, чтобы получать отпечатки ответов сервиса, независимые от известных на данный момент архитектур, и потенциально расширять эту модель на работу с не вошедшими в обучающий набор сетями.

Все это обучается на ответах 40 LLM (из топов HuggingFace Hub по скачиваниям), использованных в разных контекстах: с разными системными промптами, параметрами сэмплирования и даже с использованием RAG и CoT – в итоге в 1000 различных комбинациях. В итоге supervised-модель дает точность в 95% (неплохо для 40 классов). Наибольшие трудности модели доставляют файнтюны Llama, что в целом ожидаемо. Контрастивная модель выдает точность в 90% на LLM, которые она видела, и 81% на неизвестных (посчитано с помощью leave-one-out-метода).

BY llm security и каланы






Share with your friend now:
tgoop.com/llmsecurity/242

View MORE
Open in Telegram


Telegram News

Date: |

Matt Hussey, editorial director at NEAR Protocol also responded to this news with “#meIRL”. Just as you search “Bear Market Screaming” in Telegram, you will see a Pepe frog yelling as the group’s featured image. To view your bio, click the Menu icon and select “View channel info.” Matt Hussey, editorial director of NEAR Protocol (and former editor-in-chief of Decrypt) responded to the news of the Telegram group with “#meIRL.” The optimal dimension of the avatar on Telegram is 512px by 512px, and it’s recommended to use PNG format to deliver an unpixelated avatar. Telegram channels enable users to broadcast messages to multiple users simultaneously. Like on social media, users need to subscribe to your channel to get access to your content published by one or more administrators.
from us


Telegram llm security и каланы
FROM American