LLM_UNDER_HOOD Telegram 683
Новости с полей про разворачивание системы с встроенным AI+Coding агентов

Это продолжение истории, которую я описывал в канале ранее. Оглавление тут. Там нужно было срочно сделать систему извлечения сложных данных из разнообразных промышленных PDF спецификаций.

Пару дней назад сделали полный прогон на новых документах от новых компаний, которые добавили в пайплайн (первые шаги пайплайна - это отдельная песня). Пайплайн прожевал их, найдя 41932 сущностей

Напомню, что 400 сущностей для тестового набора данных извлекала команда в течение пары недель в сумме. Можете представить себе экономию времени.

В процессе система отчиталась, что AI Coding agent сгенерировал 2515 инструментов в 372668 строчек кода общим объемом в 15.28MB. В сумме было потрачено $61.62 (такими темпами аккаунт не скоро выйдет на новый Tier). Точность извлечения на тестовых (самых сложных) данных: 84.8%, что выше требований клиента. Причем, слабое место пайплайна видно глазами - категория документов и полей в документе (смотрите на большую красную секцию на карте ошибок в комментариях - это китайские поставщики, в их документах доменная модель очень сильно отличается в ряде моментов). Можно над этим работать дальше или просто учитывать при использовании результатов.

Про этот проект я рассказывал подробнее на KanDDDinsky. Видео пока не выложили, слайды и ссылки к докладу лежат тут.

Директора очень довольны получившейся архитектурой (дословно "Because we can!"), особенно тем фактом, что этот код не видел ни один человек, да и не увидит. При новых прогонах - просто перегенерируем заново.

Но на самом деле активное использование системы для кодинга внутри LLM-пайплайна - это просто оптимизация скорости и стоимости, которая стала возможной благодаря наличию тестов и цикла быстрой оценки качества.

Ваш, @llm_under_hood 🤗
🔥63👍229



tgoop.com/llm_under_hood/683
Create:
Last Update:

Новости с полей про разворачивание системы с встроенным AI+Coding агентов

Это продолжение истории, которую я описывал в канале ранее. Оглавление тут. Там нужно было срочно сделать систему извлечения сложных данных из разнообразных промышленных PDF спецификаций.

Пару дней назад сделали полный прогон на новых документах от новых компаний, которые добавили в пайплайн (первые шаги пайплайна - это отдельная песня). Пайплайн прожевал их, найдя 41932 сущностей

Напомню, что 400 сущностей для тестового набора данных извлекала команда в течение пары недель в сумме. Можете представить себе экономию времени.

В процессе система отчиталась, что AI Coding agent сгенерировал 2515 инструментов в 372668 строчек кода общим объемом в 15.28MB. В сумме было потрачено $61.62 (такими темпами аккаунт не скоро выйдет на новый Tier). Точность извлечения на тестовых (самых сложных) данных: 84.8%, что выше требований клиента. Причем, слабое место пайплайна видно глазами - категория документов и полей в документе (смотрите на большую красную секцию на карте ошибок в комментариях - это китайские поставщики, в их документах доменная модель очень сильно отличается в ряде моментов). Можно над этим работать дальше или просто учитывать при использовании результатов.

Про этот проект я рассказывал подробнее на KanDDDinsky. Видео пока не выложили, слайды и ссылки к докладу лежат тут.

Директора очень довольны получившейся архитектурой (дословно "Because we can!"), особенно тем фактом, что этот код не видел ни один человек, да и не увидит. При новых прогонах - просто перегенерируем заново.

Но на самом деле активное использование системы для кодинга внутри LLM-пайплайна - это просто оптимизация скорости и стоимости, которая стала возможной благодаря наличию тестов и цикла быстрой оценки качества.

Ваш, @llm_under_hood 🤗

BY LLM под капотом


Share with your friend now:
tgoop.com/llm_under_hood/683

View MORE
Open in Telegram


Telegram News

Date: |

Ng, who had pleaded not guilty to all charges, had been detained for more than 20 months. His channel was said to have contained around 120 messages and photos that incited others to vandalise pro-government shops and commit criminal damage targeting police stations. Public channels are public to the internet, regardless of whether or not they are subscribed. A public channel is displayed in search results and has a short address (link). Invite up to 200 users from your contacts to join your channel Clear Judge Hui described Ng as inciting others to “commit a massacre” with three posts teaching people to make “toxic chlorine gas bombs,” target police stations, police quarters and the city’s metro stations. This offence was “rather serious,” the court said.
from us


Telegram LLM под капотом
FROM American